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Abstract

The problem of transmit code design in multiple-input npl#toutput (MIMO) radar systems is
addressed in this paper. The problem is considered in bdticated and widely separated antenna
radars in the presence of signal-dependent interferentdamget mobility. Due to complexity of exact
expressions of the optimal detector in the MIMO radars, rimi@tion theoretic criteria are employed as
design metrics which results in a general form of non-coryatimization problems. In order to tackle
the problem, a novel technique based on the minorizatioximmaation (MaMi) algorithm is proposed
and solutions are presented under practical constrainthetransmit code, namely energy constraint,
peak-to-average-power ratio (PAR) constraint, and siityl@onstraint. Furthermore, the devised method
is extended to be robust against uncertainties of the clattd interference statistics. Finally, numerical

examples are used to show the performance of the proposedidee in different situations.

Index Terms

Code design, information theoretic criteria, MIMO radamarization-maximization, peak-to-average

power ratio, robust

. INTRODUCTION

Transmit code design is an important design challenge in iagle-antenna and multiple-antenna radar
systems, as it is shown to have a significant impact on thepeance of such systems [1]. In particular,

multiple-input multiple-output (MIMO) radars, that empglonultiple antennas at both the transmitter
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and receiver side, have attracted much interest due to flegibility of using different waveforms and
adaptivity for adjusting them to optimize desired perfonte criteria.

In general, MIMO radars have shown a better detection pmdoce, more accurate estimation of
target parameters, and better resolutions compared tdesamgenna radars [2]. There are two well-
known structures for such systems, namadjocated andwidely separated antenna MIMO radars. In the
latter, the distances between transmit/receive antemeanach larger than the wavelength of transmitted
signals. This leads to statistical independence of theatefliesignals from the target which provides
angular diversity and improves detection performance @8j.the other hand, in colocated radars, the
distances between the transmit/receive antennas are ladlbaf the wavelength of the transmitted signals.
In such systems, in contrast to phased-array radars, @iffevaveforms can be transmitted simultaneously
from different transmit antennas. This property is reférte as waveform diversity and provides better
detection performance, better interference rejectiod, more flexibility in generating radiation patterns
compared to phased-array radars [2].

Based on the above-mentioned properties, transmit wawefoode) design plays an important role in
determining the performance of both colocated and widghassted MIMO radars, and thus, much work
has been done in this area (see e.g., [2] and referencesndhdtas worth noting that the waveform
design in such systems depends on several parameters sunbbilgy of targets, the effect of the
signal-dependent interference (clutter), and practicatdtions (e.g., peak-to-average power ratio (PAR)
considerations). Moreover, depending on the desired mystdferent design criteria might be used, e.g.,
criteria related to detection, estimation, classificatietc. [2].

Several works in the last decades have considered the wavdfgsign for improvement of the detection
performance in single-antenna radars. However, most oivtitks are based on simplifying assumptions
such as neglecting the effect of the target mobility (i.eppler shift), treating the clutter as a signal-
independent interference, and/or assuming perfect aigamwledge of the statistics of interference
[4, 5]. In some other works, clutter is modeled as a wide setatonary Gaussian process or as a
response to a linear time-invariant system for the sake raplgity [6]. In [7], the problem of code
design for single-antenna radars in the presence of clattdrtarget Doppler shift is addressed; then,
signal-to-interference-plus-noise ratio (SINR) at thdpot of the receiver is maximized as a design
criterion (see also [8]).

In multiple-antenna radars, the problem of code design leas laddressed for both colocated [1, 9]
and widely separated radars [10-13]. However, simplify@sgumptions have been made especially on

the target Doppler shift, clutter nature and a priori knalgle about its statistics, as well as practical
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limitations (see e.g., [2, 14, 15] and references therd&mie to complex expressions of exact detection
performance metrics in MIMO radars (if any, [16]), inforriwat theoretic criteria [13, 17] or SINR [9, 18]
have been employed as design metrics. Note that in sevaratisns, maximizing information theoretic
criteria can be theoretically justified while the maximieatof SINR can not necessarily [15, 17, 19].

Another important issue in code design problems is prdclicatations. As an important example,
in many applications, the sought code is supposed to be arrsinplitude/PAR-limited. However, this
fact is usually not considered [18] or is partially cared atbdn other words, in several works, the code
design problem is dealt with no PAR constraint and then, a-BARstrained code is synthesized from
the solution of the unconstrained problem. This procedsirassociated with a significant performance
loss (see e.qg., [6, 18, 20]).

In this paper, we consider the problem of transmit code aefsigboth colocated and widely separated
MIMO radar systems in the presence of clutter. The aim is tprawe the detection performance of a
moving target while dealing with practical/implementatiimitations as well as uncertainties in a priori
knowledge of the interference. To this end, we employ anrinfdion-theoretic approach and cast the
problem of code design via maximization of informationdhetic criteria; namelymutual information
and J-divergence. To account for the mostly common used practical/implegm limitations in the
radar signal design literature, energy, PAR, and simylariinstraints are imposed to the design problems.
The constrained design problems are non-convex but all Aasteucture with respect to (w.r.t.) positive
semidefinite (psd) matrices (which can be assumed to bedelatthe SINR of the optimal detector) and
can be exploited to tackle the problems. Therefore, we devigeneral method to obtain quality solutions
to the design problems associated with the design metriesmiethod is based on applyingnorization-
maximization technique to the functions of scalars/psd matrices andl&adbtain stationary points of the
problems under some mild conditions. We further robuskiydesign method to handle uncertainties w.r.t.
a priori knowledge of the clutter and (signal-independémirference, which leads to multi-objective
optimization problems. To the best of our knowledge, nonmiation-theoretic code design methodology
is addressed in the literature for robust constrained ca$tgd. The previous methods mostly design
the code via a relaxation of a constraint and then, synthdhiz code to satisfy the desired constraint.
Moreover, they usually assume a perfect knowledge of trexfarence [9, 20].

The rest of this paper is organized as follows. In Sectiorthg signal and system model for the
moving target in the presence of clutter is introduced whintorporates both colocated and widely
separated MIMO systems. This section also presents thenalptietector associated with the model.

We cast the constrained code design problems for the des@gricein Section lll. This section also
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includes derivations of the proposed method to deal withdissign problems via an iterative solving of
guadratically constrained quadratic programs (QCQP4dyirgpthe QCQPs subject to the desired con-
straints is discussed in Section IV. In Section V, the desigthodology is extended to be robust against
interference uncertainties. Numerical results are pexioth Section VI to illustrate the performance of
the proposed method. Finally, Section VIl concludes theepap

Notation: Bold lowercase letters and bold uppercase letters are wsege€tors and matrices respec-
tively. I v represents the identity matrix @<V, 1 and0 are the all-one and the all-zero vectors/matrices.
The Frobenius norm of a matriX is denoted byi| X ||2 whereas the spectral norm of is denoted
by || X||2. The lx-norm of a vectorz is denoted byl|x||3. We show vector/matrix transpose )7,
the complex conjugate by-)*, and the Hermitian by-). The symbol® stands for element-wise
Hadamard product of matrices/vectorg: )tis the trace of a square matrix. The notations,.(-) and
Amin(+) indicate the principal and the minor eigenvalues of a Heamitnatrix, respectively. blkDiag(.)
denotes the block diagonal matrix formed by its argumergs( X ) denotes the column-wise stacking
of the elements of matriXX'. E{-} and®(-) stand for the statistical expectation and real-part opesat
respectively. The symbdlN (w, ) denotes the circularly symmetric complex Gaussian distiob with
meanw and covarianc&. R, represents non-negative real numbers. The notation B (A = B)

implies A — B is positive (semi)definite. FinallysY denotes the psd cone @V*".

II. PRELIMINARIES
A. Sgnal and System Model

We consider a MIMO radar system with transmitter andNgr receiver antennas. Led,, =
[am(1),...,an(N)]T € CN denote the transmit signal (code) from theh transmit antenna withV
being the length of the code.

1) Colocated MIMO Radars:. In the considered colocated MIMO radar, the distance am@mgmitter
antennas is assumed to be sufficiently small such that thectedl signals from a target are correlated
across the array and hence the whole array see the target dir¢lstiond, with the reflection coefficient
«g. Moreover, it is supposed thatclutter patches located &, - - - , 6, interfere with the target detection
at the cell under test. Thereforgn), the Ny x 1 vector of the received samples for the stationary target

at the cell under test at the time indexis given by [9}:

r(n) = aps, (Ho)stT(Ho)sw(n)

1A single target is assumed at the cell under test [2, 10] bairaidar can deal with multi-target in the detection range.
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+Za13r(91)5?(9l)sco(n) +B(n)’ n=1,---,N, (1)
=1

&(n)
wheres,.(0),s:(0), ¢(n), andv(n) are the receive array steering veétdransmit array steering vector,
clutter, and (signal-independent) interference, respalgt Herein, s.,(n) = [a1(n),--- ,an, (n)]T €
CNr denotes the transmit signal vector of the system at the tidexin. Moreover,aq and o; denote
the reflected coefficients associated with the radar cras®egRCS) as well as the propagation effects
of the target and théth interference source, respectively. Then, consideranget Doppler shift and
rearrangingX = [7(1),--- ,7(N)]T andV = [9(1),--- ,v(N)]T, the model in (1) is modified as

L
X =ag(A@P)¥(0) +A> ¥ (6)+V, (2)
S =1

where X € CV*Nr s the received signal matrix from the target at the cell uridst contaminated with
the clutter componen€ = A Y7 ;¥ (f;) as well as the interference compondrit Herein, ¥ (6)

is the steering matrix corresponding to the look anglgiven by ¥ (6) = s;(0)s! (9) € CNr*Nr and
A € CNVXN7 js the transmit code matrix (to be designed) with ,,, = a,,(n). Note that according to the
definitions ofa,,, ands,(n), we haveA = [a1, as,as,... ,GNJ = [500(1), 560(2), 8¢0(3), . .. ,SCO(N)}T.
Also, the matrixP = [p,, ..., p;] € CV*N7 is the temporal steering matrix associated with target Dapp
shift with p; = [1,exp(j27fq),...,exp(j27 f4(N — 1))]T, where f; is the normalized Doppler shift
associated with the moving target.

The covariance matrix of the signal componéhtan be found using Kronecker properties [21] as
H
R, :E{vec(ao(A ® P)\Il(90)>vec<a0(A © P)\Il(90)> }
=(In,® A P))T (In, ® [AG P))" e SYN= (3)

whereT = o2vec(¥ (6))) vec(¥(6))? 2 bb" ando? = E{agaj}. Following the same procedure, for

the covariance matrix of the clutter componéritwe have

R.=(In,®A)Q(In,® A", (4)

2Assuming uniformly spaced linear arrays, the veatg) is given by

27 fe - 27 fe

5:(0) = [1,exp(j2=Led, sin(6)), - -, exp(j2=Led, sin(0)(Nr — 1))]”, wherec is the wave (light) speedf. is the carrier

frequency andl; denotes the inter-element spacing between transmit aagehlote that a similar equation holds for the receive

steering vectos,(6).
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whereQ = 3"/, 02 ved ¥ (0;))ve ¥ (6;))? ando?, = E{aya}}, and finally,
R, = E{vedV)veqV)#}. (5)

It is worth noting that with the assumption of zero Doppleiftsthe model is compatible to that of [14],
and by neglecting the clutter, the model is simplified to the o [22] (see also [23]).

2) Widely Separated MIMO Radars. In widely separated MIMO radar systems, the distance among
array elements is assumed to be sufficiently large such teat(iossible) target or clutter provides
uncorrelated reflection coefficients between each pairddmr&ransmitter and receiver [3]. Therefore,
the reflected signal (vector) at thigh receiver can be modeled in the discrete-time domain atétie
under test as [2, 15]

Tp = Syik+C;+vy, k=12--- Ng, (6)

wherer;, € CV, v, is the signal-independent interference at iftle receiver, ands,,; i, is the received

signal from the target which can be written as
Nr

swz’,k == Z (am,kam ® pm,k‘)7 k= 17 o 7NRv (7)

m=1

with «,, ), being the reflection coefficient accounting for the targetSR&hd the propagation effects
associated with theath transmitter and théth receiver. In (7)p,, . is the temporal steering vector from
the mth transmitter to theith receiver withp,,, , = [1,exp(j27fy,, ), - ,exp(j2m fq, . (N — 1)]F, in
which f4,. . is the normalized Doppler shift associated with emitteagaigrom themth transmit antenna
and captured at théth receive antenna (which also depends on the angle betweetatget and the
antennas). In widely separated antenna radar systems, d@inerdifferent reflection coefficients for the
target at the:th receiver denoted by, = [a , - - ,aNT,k]T € CNr, Therefore, the echo of the moving

target at thekth receiver can be written as
swi,k:(AQPk)alm k:17 7NR7 (8)

with Py, = [Py, - PN, i) € CN*Nr and A is the matrix code as in the colocated MIMO case.
Furthermore, in (6)¢c; can be expressed as = A3, where3, € C7 is the vector associated with

clutter component at théth receiver antenna [14, 15]. Thus, we can reformulate (8) as

Tk:(AQPk)ak‘I—A,@k""Uk, k:]-aQ))NR (9)

3The presented model for the colocated and widely separatdtDMadars addresses an ideal beam pattern for the antennas;
however, the effects of the imperfect beampatters can b@rpocated into the model (see e.g., [7] and referencesithéoe
details).
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Similar to the colocated case, we can defe= [r{,rs,...,7y,] € CV*N= and rewrite (9) as
X=S+C+V, (10)

whereS = [(A®© Py)ay,...,(A® Py,)ay,], C = A|B,B,....,8N,], andV = [v1, v, -+ ,vN,].
It should be noted that the reflection coefficients at variegeivers are uncorrelated in widely separated
MIMO radars and hence, the covariance matrices can be ebtaif
R, =blkDiag[E{[(A ® P1)ai][(A ® P1)as]"}, -,
E{[(A® Py,)an,][(A© Py,)an,]"}]
=blkDiag[(A ® P1)Rs, (A® P,
(A® Pn,)Rs,, (AG Py,)"], (11)
in which R,, = E[ag.af!] € SY™. Similarly, we have
R, =blkDiag(AR., A" ... ;AR A, (12)
R, =blkDiag(Ry, ..., Ry, ),

where R., = E[3,8f] and R,, = E[v,vf].

B. Optimal Detector

In both cases of the colocated and the widely separated MIatfars, the target detection problem

leads to the following binary hypothesis test

Hy: z=c+wv
(13)

Hi: z=s+c+w
wherezx = veq X) € CVVr, s = veqS), ¢ = veqC), andv = veqV) are assumed to be Gaussian
random vectors [2, 6]. Defining £ D~'/2z with D = R, + R,, the underlying detection problem is
equivalently expressed as [24]

Ho:y ~ CN(0,Iyn,) (14)

HllyNCN(O,INNR+F)

“Note that the devised methodology in this paper can also pkedpto the cases for which the aforementioned assumption

does not hold.
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1 1 ~  ~H . . . .. .
whereFF = D :R,D > = UAU with A being a diagonal matrix containing eigenvaluesrofand
columns ofU are the associated eigenvectors. Therefore, the candnitalof the optimal Neyman-

Pearson (NP) detector is given by [24]
NNgr 2
An 20|
2 15
n; T 2 (15)

. . . ~ [
where \,, are eigenvalues of’, 7 is the detection threshold, and= [z, - - - ,zNNR]T =U .

In the case of widely separated MIMO radars, the makixs block-diagonal with blocks
{Fi}8 = {D;*(A© PRy (A0 PO D2
whereD;, = AR, A" + R, (see (11) and (12)). Now, Iettir@;kaﬁf denote the eigen-decomposition
of F}, the canonical form of the optimal NP detector becomes

ZZ nk|an:| <777 (16)

el RV

wherezy, = [z 4, - ,5N7k]T = l_JJ:D,;l/Qrk, T}, IS given in (6), andxmk is the nth eigenvalue of the

matrix F,.

I1l. THE PROPOSEDMETHOD

The aim is to design the code mattik to improve the detection performance of the presented aptim
detector. In this section, we consider a knowledge-baseghftive) system such that the second-order
statistics of the target, clutter, and interference arenknat the design stage. This can be fulfilled using
geological and meteorological data as well as data of pusvBrans in a cognitive setup. However, in
Section V, we extend the proposed method to deal with urioéda in prior knowledge of interference
via employing a robust approach.

The detector presented in Section II-B is optimal in the sdhat it maximizes probability of detection
while keeping probability of false-alarm below a certaimethold. However, in most cases, finding
the best transmission code that maximizes the performahdeeooptimal detector is not analytically
tractable. In such cases, other design criteria referred itafor mation-theoretic criteria can be employed
for transmission code design [15, 19]. Herein, we employuauinformation and J-divergence as the
information theoretic criteria for the code design. Thesdrios give some bounds on the performance
of the optimal detector, i.e., maximizing each of them ermearthe performance of the detector (see [15,

17, 25, 26] and references therein for detailed discussaodsthe justification of using such metrics).
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A. Colocated MIMO radars

It is shown in [17] that maximizing the mutual informatiop) between the received signal and the
target response leads to a better detection performandeeinase of Gaussian distributions. Using the

results of [25], theM metric associated with (14) is given by
M = log[(me)N det(Iyn, + D™ :R,D~2)] — log[(me)™ det(Inn,,)]
=logdet (Inn, + F) a7

with e being the Napier constant & 2.71). Another information theoretic metric is the J-divergenc
(J) which is used to measure the similarity between two distigms f, = f(y|Ho) and f1 = f(y|H;).
Employing the metric for signal design is based on the Steimina [15]. The7 metric can be computed
as [26]

E{(L — 1)log(£)[Ho} = Eflog(£)|Hy} — E{log(L)[Ho},
where L is the likelihood ratiol £ f(y|Hy)/f(y|Ho). Applying the above equation to (14) results in
J = tr{(F+INNR)_1 +F — INNR}-

Thus, the code design problem for colocated MIMO radarsgugie aforementioned criteria can be cast

as
4 hax f1(F)
subjectto F = D‘%RSD‘% (18)

A e,

whereZ € {M, J}, fm(F) =logdet (Inn, + F), andf7(F) = tr{(F + Iyn,) ' + F — Iyn,}-
In (18), C represents a typical constraint set on the code madridn this paper, the following three
types of constraints on the code maté are considered; indeed, the getepresents one of these sets
1) Note that the transmit energy of the system is giveB B [lam|3 = S50, [[sco(n)[3 = || A%
Therefore, to impose the energy constraint, Wd|lAt|2F < eg4, Wheree, is the maximum available
transmit energy.
2) PAR constraint, i.e.|A||2 = NNy andmax,—1.... nn, |@(n)]? < v, wherea(n) denotes thenth
element of the vecto = veq A), and~ is the maximum PAR level. The PAR constraint can also

be applied column-wise to the matri in widely separated MIMO radars (see Section IV-B).
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10

3) similarity constraint, i.e.\,|A—AO||% < e, WwhereA is a desired code matrix ards the similarity
threshold.

Imposing these constraints leads to three different optitton problems with the general form of (18).
Note that in general, the stated design problem is non-coamd belongs to a class of NP-hard problems
[27]. However, it can be further viewed that(F') is a concave function of" € SiVNR whereasf 7 (F)
is a convex one.

In order to obtain solutions to the optimization problem 8), we use minorization-maximization
(MaMi)® technique, an iterative optimization technique, which imézes a proper upper bound of the
objective function to find their maxima [28]. In summary, Malkhn be used for obtaining stationary

points of the general maximization problem
max h(w), subject toé(w) <0, (19)

in an iterative way wheré(.) andé(.) can be neither concave nor convex. In ttieiteration of MaMi,

a so-calledminorizing function p¥) (w) is found such that
P (w) < hw), Yw and p(w ) = n(wY),

with w(~1) being the value ofv in the (i — 1)th iteration. Then, the minorizing functiop® (w) is

maximized in theith iteration rather than the functionw), i.e.,
max p'”(w) subject to ¢(w) < 0 (20)
w

to obtainw®. Logically, p (w) is chosen such that (20) is easier to solve than (19).

The MaMi method is employed in the following theorem to findadusion to the constrained design
problem in (18). Indeed, Theorem 1 deals with the problermi8) py iteratively solving a proper QCQP.
The methods for solving the aforementioned QCQP stated e@oifem 1 are presented in Section IV.

Theorem 1. The design problems in (18) faM and J are equivalent. Furthermore, the solution
A = A, to this problem can be obtained iteratively by solving thikofeing QCQP in thesth iteration

min  a”HYa +2R{(¢")"a} (21)

a

subjectto a€C,

wherea = vec(A) and C denotes the constraint set (associated withimposed ona. The matrices

{H®}; = 0 and the vectorgg()}, are given below. |

®Also known as majorization-maximization or MM algorithm tine literature.
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Proof. We begin by noting that the covariance of the signal compbReris rank-1; namelyR, = kk’
with k = [In, ® (A® P)]b andb = o,vec(¥(6p)). Now, using the determinant property [21], we

obtain
logdet(Inn, + F) =logdet (Inn, + DiékkHDfé) (22)
=log (1 + k" (Rc+ Ry) k) =log (1+ J)
whereJ = k' (R, + R,) 'k € R... Similarly, by employing the trace inequality [21], we have

tr {(Inng, +F) '+ F} =tr {(1+ )" +J} + const.

1
=J + —— + const. 23
J 157 const ( )

Note that the objective functions in (18) are monotonicallyreasing functions of the scaldr Therefore,
the design problems foM and 7 are equivalent. Consequently, in the sequel, we derive 6P
associated with the mutual informatforThe 7 metric can be dealt with similarly.

Remark 1: considering the above observation, we note that the obgdtinctions in (18) can be
replaced by the scalaf. Also, one may consider as a type of SINR at the output of the detector and
observe that for the employed model of colocated MIMO rademsle design via maximizing SINR is
equivalent to that of maximizing the information theoretigteria. We herein remark on the fact that
SINR maximization has been addressed in the literature fiMi®™radar code design but to the best
of our knowledge, they are all based on a synthesis staggginial procedure to deal with e.g., PAR
constraint or assume a perfect prior knowledge of inteniesze

The following lemma is the key to employ MaMi technique foethon-convex design problem and
deriving the QCQP.

Lemma 1: For fu(F) = logdet(Inn, + F): SYV* — R, we have
logdet(Inn, + F) = log(uHBx/}u), (24)
wherew = [1,0% . ,]" and

1 K
By = e SYNetL (25)
k R,+R.+R,

Moreover, for any full-column rank matrik/, log det(UHBj\jU) is convex w.r.t.B = 0. |

®We can equivalently consider the maximization.bf however, we deal withog(1 + J) to use the results for the widely

separated case shortly.

February 19, 2017 DRAFT



12

Proof: See Appendix A. O

Using Lemma 1, the solution to (18) for the cas&Zof M can be found by considering the equivalent

optimization
log(u’ B}
A, Lo B
subjectto k=[Iy,® (AG P)|b. (26)

According to Lemma 1, the objective function in (26) is conwer.t. Bj\j. More concretely, here, the
matrix U is given by the vectow and the determinant of the scaPmHB;,}u is given byuHBj\ju.

Therefore, this term can be minorized using its tangentekna givenB’M as [29]
Hp-1 Hp ! ~ =
log(u” B u) > log(u” Byu) +tr{Y(Byx — Bum)},

whereY = — B u(u B u) 'u’ B),. Moreover, the first term on the right hand side of the above
inequality is constant for a giveﬁ?M. Thus, by definingl = ~Y = 0, the optimization problem for

the ith iteration of MaMi can be handled via solving

i tr(Y B
AEE%PBM r( M)
subjectto k=[Iy,® (AG P)|b. (27)
(i) : e . . v11 V12 .
where Y'" denotes the matrif at theith iteration. Now, lettingY = with the same
v Yoo

partitioning as that ofB, in (25), neglecting the constant terms, and using hermipiaperty of Y

and R, the following equivalent problem is obtained for (27)

. H, () (@)
AeCI,rll%TRc,k 2R{k" vy } +tr { Y35 (Rs + Rc)}
subjectto R, = kk" (28)

R.=(In,®A)Q Iy, ® A
k=[Iyn,®(AG®P)D.
The optimization problem above is still implicit in terms tfe code matrixA. Lemma 2 is the key to
obtain explicit expressions in terms .
Lemma 2; Let G = bvgll, g= Z]kvjl vec(GkkH), g=(gop"), p=vec(P), anda = vec(A), where
G € CV*N7 s a submatrix ofG' containing rows(k — 1) Nz + 1 to kN7 and columngk — 1)N + 1

to kN. Then we have
R{k" vy} = R{g"a}, (29)
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tr{Y%(R;+ R.)} =a"H a,

where
NR NR

H=3) > [(Tﬁ © Youm) © (BP")" +Qff @ TZQ,H@} :
1=1 k=1

in which T'y,; and Q,,; are submatrices of” and Q (see (3) and (4)), respectively, containing rows

(k—1)N7+1to kNp and columngl — 1) Ny + 1 to [Ny, and Yy, is @ submatrix off 5, containing

rows (I —1)N +1 to [N and columngk — 1)N + 1 to kN. [
Proof: See Appendix B. O
Now, by applying Lemma 2 to (28), we have the following eqlewh optimization problem in théth

iteration
min a"HYa + 20{(¢")"a} (30)
subjectto @ e C,
in which H® andg(® are available using eq. (29) and it completes the proof ofoféra 1. O

B. Widely separated MIMO radars

For widely separated MIMO radars, the information thearetiteria M and 7 are given by
Nr
M= "logdet(Iy + Fy), (31)
k=1
NR ~ ~
jzztr{(IN—l—Fk)_l—l-Fk—IN},
k=1

and therefore, the corresponding constrained design gmabtan be cast as

Ngr
max fwz(Fy)

subjectto  Fy =D, *Rs D, ?, (32)

whereZ € {M, 7}, fwm(Fi) = logdet(Iy + Fy), and fiy,7(Fi) = tr{(Iy + F) "' + F; — In}.

It should be noted that the above constrained design proldemn-convex. Furthermore in this case, as
opposed to the colocated case, the results of emplayih@gnd 7 metrics are not generally equivalent
(see Section VI-B). This is due to the fact that the covagamatrix of the target componeiit; is no
longer rank-1. Therefore, the following theorem that pnésé¢he results for the widely separated antenna

case is proved for each metric separately.
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Theorem 2: The solutionA = A, to the optimization problem (32) can be obtained iterayiviay
solving the following QCQP in théth iteration

) N H
min 6HH§/Z&I& +2 %{(9%71) a} (33)

a

subjectto @ € C,

where the matrices{H%J}i = 0 and the vectors{g%l}i are defined for each of the information
theoretic metric& € {M, J} separately in the sequel. [

1) Mutual Information: The case of mutual information\{) is similar to that of the colocated case;
however, here the covariance matriddg;, }; can be full-rank. Therefore, we apply MaMi technique to

the functions of psd matrices. LettinB,, = Y, Y ¢ SfrVT and by defining

By, Bims
Bim=| e Syt (34)
Bk,/\/[12 Bk7M22
in which Bth =1In,, B,1€7/\/112 = YkH(A ® Pk)H, and Bk,M22 = ARCkAH + (A ® Pk)Rsk (A ©

P, + R, , we havé

Nr Nr
Zlog det(Iy + F,) = Zlog det(In, + Ji)
k=1 k=1
Nr
= logdet(U" B, },U) (35)
k=1

with U = [INT ONTXN]T and
Jr=Y{ (Ao P)" (AR, A" + R,) (A0 P)Y}. (36)

Next, using the results of Lemma 1, (35) can be minorizedsgupporting hyperplane at givé@k,M}k

as
Ng Nr -1
Zlogdet (UHB;leU> > Zlogdet (UHBI;MU)
k=1 k=1

Nr
+ Ztr {®k(Brm — Bim) )
k=1

where®, = — B, U (U" B, ,,U) 'U" B, . Let the psd matrix-&; be partitioned in accordance

D1 Prog

with By, v as . By neglecting the constants, it can be shown that the fatigyaroblem

Do Poog

'See (11) for the definition oR, and R, .
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is solved in theith iteration of the MaMi procedure

NR .
qip L Ir{(ARLA" 4 (40 POR, (40 P2y}
+2Ru({Y{(A0 Py ey ) (37)

Next, by employing standard Kronecker product propertiess gome algebraic manipulations, we obtain

the following explicit form w.r.t.a in the ith iteration
min a"HY) a+29{(g\),) a} (38)

subjectto a €C,

where by definingp,, = vedq Py) we let

Hx/tw Z RH®(I)22I<; ® o))" +RH®‘I’§2)14;]

. R .
gx/)l,W = Zvec(@ézl)kakH) ® Di.-
k=1

2) J-divergence: For this case, the objective function fs = Z]kvjl tr{(Iy + Fy)' 4+ Fy — In}.
Using the trace identity and the fact thR, = Y, Y, we have

tr{(Iy +Fp) ' + F, — In} = te{(In, + Jp)" " + J}} + const,

where J}, is defined in (36). Now, we first observe that the functiofi(Iy, + Jj)~ '} is convex w.r.t.

the psd matrixJ,. Therefore, a linear minorizer is available considering téingent plane at a give?ﬁ;g
tr{(INT + Jk)_l} > tr{(INT + jk)_l}
—tr{(INT —|—jk)_2(Jk—jk)}. (39)

The above minorizer leads to the following optimization fie ith iteration

Nr
(@)
tr{L;’J 40
RPN D (40)
subjectto  J,=YH(Ao P (AR, A" + R,,)™!
(AO P)Yy.
with LV 2 Iy, — (I, +J.@)~2. It should be noted that the matricé&'”}, are psdv k, i, since
Amin(In, + J1) > 1. Therefore, there exists a matrEl(j) such thatL() = El(j)El(j) and thus, we
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have the following equivalent form for (40)

Nk
0"
max ; tr{In, + E;” Y (A® Pp)? (41)

(AR, A" + R, ) (A® P,)YEV}.

Using tricks similar to those of the mutual information cabe objective function in (41) can be rewritten

as a convex function of auxiliary matrices which lays theug for applying the MaMi technique. More
~NH .

precisely, by defining” £ Iy, + EV)" Y (A® Py)¥ (AR, A" + R,,) (A0 P,)YEY and using

the matrix inversion Lemma, it is observed tHat= UHB}1U whereU = [Iy, Oy, xn]T and

Bk,Jn Bk7~712
By, 7 = (42)

H
Bk,jlg Bk7s722

- _ _ pfyn H _ H (i)y-H
with Bk,Jn =In,, Bk,Jm = Ek Yk (A@Pk) ) a.l']dB]g“722 = ARCA‘A +(A®Pk)Yk;Lk. Yk (A@
P,)% +R,, . Furthermore, using a proof similar to that of Lemma 1, it barshown thatr(UHB,;;U)

is convex w.r.t.B;, 7 >~ 0. Therefore, the solution to (41) in thith iteration can be obtained via solving

Nz
H p—1(3)
B 4
W, B “

which is non-convex. To tackle (43), employing the MaMi teitjue, we minorizetr{U B, ; U}
using its supporting hyperplane at a givé)cj as
_ ~—1
tr{U" B, U} >t {U"B,, ;U}
~ 1 ~ 1 ~
—tr{By, ;UU"B,, ;7(Byg — Bi.7)}.

Consequently, a§3’5 is fixed, the problem in théth iteration turns into

Nr
: (i)
tr{w'" B 44
min ;?1 {W,’By, 7}, (44)

with W,(j) = (B,Efg)—lUUH(B,Ef’G)—l > 0. By partitioningW,(j) similar to that of B, 7 and neglecting

the constants, we come up with the equivalent problem

Nr
i tr{(AR, A"
min ;[ r{(AR,,

+HA G PYY LYY (A0 Py YWY, )

it i
+2Ru{EY Y (Ao PYTWE 1), (45)
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which can be recast in terms afby employing techniques similar to those .® as

min @ HY\a +20{(95))"a)

subjectto a €C, (46)

where

Nr . ;
Hg)w = Z[((YkLg)YkH) ® ngk)
k=1

o (Bpi)T + REo W),

)H

gf;{W _ Zvec(wg’kaE,(j YH) o pi.
k=1

IV. SOLVING THE QCQPIN EACH ITERATION
For both colocated and widely separated MIMO systems, th@B@ each iteration of the devised
method is in the form of
main a“Ha + 2 R{g"a} (47)
subjectto @ € C,

where’H andg depend on the scenario (see Theorem 1 and 2). The superg¢ripas been dropped

for the simplicity of the notation.

A. Energy Constraint

In this case, the constraint set is given HﬁH% < es. Therefore, the resulting QCQP is a convex
optimization problem. This problem can be solved using #suits of the analytical solution provided
in [30]. It should be noted that applying the energy constrait each transmit antenna separately in

widely separated MIMO radars does not affect the convexitthe QCQP in (47).

B. Peak-to-Average Power Ratio (PAR) Constraint

For PAR constraint, we consider the problem for the two ca$#® colocated and the widely separated

MIMO radar systems.

February 19, 2017 DRAFT



18

a) Colocated MIMO Radars: In this case, transmit antennas are close to each other amk he
the same PAR constraint is applied to the signal transmftiemh all antennas. Thus, the optimization

problem in theith iteration can be cast as

min  a’Ha+2R{g"a} (48)
a
subject to pmax la(n)|* <~
lal3 = NN,

with a(n) denoting thenth element of the vectos and~ being the maximum peak power. The QCQP

in (48) is NP-hard in general [27]. However, it can be equndly rewritten in the form of

max  a'Ha (49)
a
subject to a(n)]? <
j poimax o fa(n)]” <9
@l = NNz,
~ H

with a = [ET, N7, H=pIyn, 11— K, andK = " g , for any 1 > A\ax(IC). Now, according

g 0

to [15, 27], the problem in (49) can be solved iteratively s@ving the ‘hearest-vector” problem at the

(I + Dth iteration

min @) —a®)3 (50)
a

subject to a2 <
j poimax (e ()7 <y

la“* V|3 = NN,

wherea®) represents the vector containing the fifétV; entries ofHa"). A recursive algorithm is
proposed in [31] for solving (50). It is worth noting that ttmal transmit energy in (50) is considered
to be NNpr. However, if another energy level is required, the final 8olucan be scaled to meet the
desired energy level [15].

b) Widely Separated MIMO Radars. Different PAR constraints (with parameteys) might be ap-
plied to the code transmitted by each antenna in widely sepdsystems. Letting = [a], as, -~ ,ax,|”, (48)

is modified to

min  a’Ha +2R{g"a} (51)

a

subject to  max [ax(n)|? < W, VE

n=1,-,N

Ha’k”%:N7 k:17”'7NT-
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whereay(n) is thenthe element of the vectai,. Similar to the colocated case, (51) can be written in
terms ofa = [a’, 1)7 as
max aHa (52)
a

subjectto  max |ax(n)]* <, Vk

n=1,--,N

laxl3 =N, k=1,---,Nr.
Iterative tackling of the above problem leads to the follogvioptimization in the(l 4 1)th iteration

min @t — a3 (53)

subject to max \65“)(71)!2 <V, vk

n=1,--,N

~(1
@2 =N, k=1,--- Ny

with a¥) being the firstV N elements ofHa® (and being partitioned similar ta-see above). This

problem is equivalent to

Nt
. ~(l+1 l
min > @ — a3
{U'A-, e k=1
i (1) )12
subject to max la, " (n)|* <, VE (54)

la B =N, k=1, Np.
Interestingly, the optimization problem in (54) is sepdeal.r.t. ¥ and hence, can be solved via solving
the following set of Ny problems

. ~(+1
min Ha,iJr -
{a(l+1)}k

ay|3 (55)

subjectto  max G ()2 <
n=1,--,

~(1
@2 =N, k=1,--- Np,

whose solution is similar to that of (50).

C. Smilarity Constraint

In this case, the problem of code design at dtieiteration can be cast as [20]
min  a’Ha +2R{g"a} (56)
a

subjectto  [|@—aol2 <e, |[a]2 = es,
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whereag is a code with §ood” properties and: is the similarity threshold [5, 32]. The QCQP in (56)
has a hidden convexity. Indeed, the semidefinite relaxaifq®6) is tight and the resulting SDP can be

written as
mZin tr (A12) (57)
subjectto  tr(A2Z) =e;, tr(As3Z) <0, tr(A4Z) =1,
: aa’ at* : . .
with Z = - wheret is an auxiliary variable and
a’t |t
I 0
Al = ’C, A2 = ’
0 0
I —ao 00
As=| _, , Ag=
—af o3 -« 0 1

Now, if [(a,)” t,]7 is a solution to (57), them® = a,/t, is an optimal solution to (56) (see
[17, 33)).

The proposed method for dealing with the constrained codedegroblem is summarized in Algo-
rithm 1. Note that for both colocated and widely separatestesys, a QCQP is solved in each iteration
of the proposed method. The parameters of the objectivedimm the QCQP depends on the system
type (colocated or widely separated) and the employed desigtric. We herein remark on the fact that
applying the devised method to the constrained problenus lgaa monotonically increasing sequence of
the objective values of the design problem which guarartteesonvergence of the sequence (see [15, 28]
for details).

Remark 2 (computational complexity): the computational complexity of the proposed method per
iteration can be taken into accofirty noting the fact that according to Algorithm 1, each itenat
of the method consists of first updating the parameters oafilseciated QCQP and second, solving the
QCQP. We consider the order of the computational complgxigy iteration) assuming that the matrix
multiplications (and hence e.g. the inverse) can be peddrmith complexity ofO(n?3) for a matrix in
Cm*™[34]. Also, without loss of generality, we consider typicalses in which the complexity for updating
the aforementioned parameters is mainly determined byeteired matrix inversions (when compared

to other matrix multipications/manipulations). For thdomated MIMO system, at each iteration, first,

8The computational complexity is linear w.r.t. the numbeitefations.
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Algorithm 1 The Proposed Method for the Constrained Code Design Usinghation Theoretic Criteria

Ze{Jg, M}
1: Initialize @ with a random vector irCV¥"r and set the iteration numbeéro 0.

2: Solve the QCQP of Theorem 1 or Theorem 2 (depending on theedesystem and metri€) via
« the results of Section IV-A for the energy constraint,
« considering (50) for the PAR constraint in colocated systamd considering (55) for the PAR
constraint in widely separated systems,
« the results of Section IV-C for the similarity constraint,
to obtaina'*Y; setl « i + 1.
3. Update the parameters of the objective function in the QC®QBtep 2 according to the desired
system and metri.
4: Repeat steps 2 and 3 until a pre-defined stop criterion isfigmtj e.g., the change in successive

values of the metric is less than a predefined threshold

the inverse of the matrixB s must be computed possessing a complexitydf N Ng)?3). Second,

a QCQP must be solve that its computational complexity ddpem the constraint set: i) The QCQP
with energy constraint can be solved via the semi-closeafeolution in [30] possessing a complexity
of O((NN7)%*3). ii) The QCQP for the PAR constraint is NP-hard and is tackia an iterative
algorithm. This algorithm is initialized by the computati@f the principal eigenvalue of the matrix
K with complexity of O((N Nr)?); then, each iteration of the aforementioned algorithm ifgpmned
efficiently, e.g., with a complexity o (N Nr) for the unimodular case. iii) For the similarity constraint
the QCQP is recast as an SDP with{(N N7)*5) complexity [33]. Using above discussion, the case of

widely separated systems can be dealt with straightforyard

V. EXTENSIONS OF THE PROPOSED METHOD

In practice, there might exist uncertainties w.r.t. a priarowledge of the interference statistics which
should reasonably be considered in the code design stagigisleection, we model the uncertainties of
clutter and noise covariances using their spectral norrhat i, for colocated systems, it is assumed

that for covariance matrices of noise and clutter we have

IR, = R%ll2 < Guy 11Q — Q°ll2 < ¢
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respectively. For the widely separated case, we suppdeealif uncertainties at various receive antennas

as

HRvk - RngHQ S Cn,ka HRCA- - ngHQ S Cc,kv (58)

where R’, Q°, R),, and R are given psd matrices. Note that the scalar parameters., ¢, and
C.,k rule the corresponding uncertainty regions. In such casesan robustify the design via improving
the system performance in the worst case scenario [7, 8,H9jce, a robust constrained code design

problem can be cast as

W R
subjectto  ||R, — R[]z < ¢ (59)
1Q — Q°l2 < ¢

J=k"[(Iy, ® A)Q(Iy, ® A + R, 'k
k=[In,®(AGP)b

R, >0, Q>0,

for colocated MIMO radars witlf € {M, 7} and fapq =log(1+J), fr=J+1/(J+1); and

nax Mgy vz
subjectto  [|R,, — R ll2 < Cop, VE (60)

1Re, — Rlpll2 < G Yk
Jy=YHAo P (AR, A" + R,)!
(AG PL)Yy
R, =0, R, =0,
for widely separated MIMO radars witfy v = S0 %, log det(Iy, +Jy) and fi 7 = Soo%, tr{(In, +

Jr)~' + Ji}. Interestingly, the robust problems above can be dealt widhthe devised methods in

Theorem 1 and 2 considering the results of the following teen
Theorem 3: The solutions to the robust design (i.e., max-min) probléemg¢59) and (60), can be

obtained by considering the following optimizations, resgvely

max
AeC fI

subjectto  J =k [(Iy, ® A)(Q° + CIn, N, )IN, @ A)H
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+(R® + I nn,)] Mk (61)

k=[In,®(AGP)|b,
with Z € {M,J} and fyr =log(1+ J), f7=J+1/(J+1); and

ney v o

subjectto  J, =Y (A ® Py)"[A(RY, + Cepln,) A
+(R) j + CurIN)] (A G PLY,

with fyy o = S0 logdet(In, 4+ Ji) and fig = S0 tr{(Iny + J&) ™" + T} ]

The problems in (61) and (62) are in the form of the problemdtmorem 1 and 2, respectively.
Therefore, we have the following corollary.

Corollary 1: Solutions to the robust constrained design problems carbtzéned by iteratively solving
the stated QCQPs in Theorem 1 and 2 when the matfifes} and vectors g} are updated according
to the results of Theorem 3 (f&f € { M, J}).

Proof. We prove this theorem for the case of widely separated MIM@ars as the colocated one is
straightforward. We consider the inner minimization in Y@&hd observe that it is separable w.kt.

Furthermore, for every, we have

i logdet (I
r)D,  logde (Iny + k)
subjectto || Ry, — R ill2 < G (63)

HRck - Rg7kH2 < Cc,k
Jy=YH (Ao P, (AR, A" + R, )"
(A ® Pk)Yk

Note also that the functiorf(X) = logdet(In, + X) : Sivl — R4 is monotonic w.r.t.X > 0 [20].

Hence, to obtain the solution to the above problem, we censieé following multi-objective optimization

problem
. YH A P H A . AH Y —1
R., R, =0 k(A O P (AR, AT+ Ry,
(AG Pr)Yy
subjectto  [|R,, — RO, ll2 < Co (64)

IR, — R ll2 < Co
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The constraint in (64) ok, is indeed
R?),k - Cn,k:IN = Rvk = R%k + CndIN (65)

Similarly, for R, we haveRY; — (cxIn, = Re, = R} + (crIn,. Accordingly, the problem in (64)

boils down to the problem of the following form

e YEAG P AR AT R
(A PL)Yy
subjectto Ry, — Cupln < Ry, 2 RY ;. + Cuiln (66)

RY, — CopIng 2 Re, 2 R+ Cepd vy

Therefore, the minimizer to the problem in (64) is given bggAppendix C)
Ry =R),+Cuiln, RL =Ry +Corln,, (67)

which completes the proof. O

VI. NUMERICAL RESULTS

In this section, we provide several numerical simulatiangvaluate the performance of the proposed
code design algorithm for both colocated and widely sepdrddIMO radar systems. In the simulation
setup, unless otherwise explicitly stated, a MIMO radahwit; = 5 transmit antennasyi = 3 receive
antennas, and the code length= 11 is considered. As for the constraints, the transmit energis
supposed to be equal 10 Moreover, the phase code design is addressed meaningpéhBAR constraint
with v = 1 is imposed to the code design (without loss of generality esume that the same PAR
constraint is applied to the whole transmitters, i.e., aBsg the colcated scenario-see Section IV-B).
For the similarity constraint, the Barker code of length= 11 is considered as the reference code for
each transmitter. Also, a similarity threshald= 0.75 is taken into account. The proposed method is
initialized by the reference code Barker at each transmittiee thresholdt as the stoping criterion of
Algorithm 1 is set tol0—*. Moreover, thecvx toolbox [35] is used for solving the convex optimization

problems.
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A. Colocated MIMO Radar Systems

For the collocated system we let the target at the afigle- 25 degrees with normalized Doppler
shift f; = 0.25; also, the number of interfering clutter patches is suppdeede . = 7 aroundéy, viz.
{0,} = {22,23,24,25,26,27,28}. A homogenous clutter environment is dealt with herein yimg that
oe1 = 0c2-- = 0. Also, a colored noise with the exponential correlationpghés considered for
which the (m,n)th entry of the covariance matrix is2p/™ " with 2 = 1,p = 0.5. For this case,
signal to noise ratio and clutter to noise ratio are define&MHR = %es and CNR= ‘%les. Note that
according to Theorem 1, employing mutual information is ieajent fo that of J-diverg’ence; therefore,
without loss of generality, in this subsection, we inclutte results for the mutual information. We
begin by numerically addressing the convergence of thesdduinethod. Fig. 1 shows the values of the
mutual information vs. the number of iterations for SNR) dB and CNR= 0 dB. The values of the
criterion increase by increasing the number of iteratiomshsthat the improvement in the successive
iterations reaches the predefined threshold (see Algorithnn the constrained designs, smaller values
are observed for the metric compared to the case of just gmemstraint due to the smaller feasibility
regions. However, the performance degradation of the pbade design is negligible which highlights
the effectiveness of the design methodology. This is aitteith to the fact that the proposed method directly
deals with the constraint instead of employing a suboptsgathesis procedure (see e.g., [9, 20]). Note
that the size of the feasibility region and hence the peréore loss for the similarity-constrained case
depends on the value of similarity thresheld

Next, we illustrate the detection performance associatddthhe designed code via the proposed method
(shown in Fig. 1). To this end, the receiver operating charétic (ROC) of the optimal detector (15)
is considered. Fig. 2 shows the ROC for the detector whenytsierm employs the designed code as per
mutual information criterion. The ROC is obtained numdhcasing the results of [16]. The figure also
includes the performance of the systems employing randadimgdwith i.i.d. Gaussian elements for the
code), the system with all-one codes (i.e., an uncodedmsysith a scaled version oA = 1), the system
with the code matrix obtained by the method in [36], and theteay with quasi-orthogonal waveforms
[22][20] at the transmit side. A significant performance mmyement can be observed for the system that
employs the designed code when compared to other systerts aBlimprovement over quasi-orthogonal
waveforms is also reported in [20]—however, the method 0] [& only applicable for stationary targets
and when the location of the target does not overlap withdhtte clutter patches. Regarding the method

of [36], the improvement can be explained using the fact thist method implicitly assumes receivers
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Fig. 2. ROC of the optimal detector for the designed codesnitual information criterion and several other methods.

with matched filters not optimal filters. Similar to Fig. 1,g#e-code design has a negligible loss in the
detection probability compared to the energy constraiseoahich highlights the effectiveness of the
devised method.

The effect of the target Doppler shift on the detection penfance in the presence of clutter is illustrated
in Fig. 3. The figure shows the probability of detectié vs. normalized target Doppler shift for the
proposed design methodology. In the figure, we set the pitityabf false alarm to Py, = 107%,
SNR= 0 dB, and CNR= 10 dB. As expected, when the Doppler shfft is near zero, the probability of
detectionP; is small. On the other hand, for a wide-range of the valueg; pthis figure shows relatively
high detection probabilities. Indeed, in presence of digependent clutter, the target Doppler shift helps
to discriminate the target from the stationary clutter. i&mto Fig. 1 and Fig. 2, the phase-code design

shows a slightly lower?; compared to the energy constraint case.
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Fig. 3. Probability of detection vs. normalized Dopplerfstfi; for the proposed design method.

We examine the the robustness of the system performancesagaile dis-adjustments of the target for
the proposed method. In Fig. 4 the values of the mutual inddion M is plotted versus angle mismatches.
More precisely, we design the code assuming= 25 but compute the values of the metric for the case
that the target is actually located at some other afigie25. Expectedly, such an angle dis-adjustment
for the target results in performance degradation. Howekiermetric remains at th&th percentile line
for a relatively wide-range of the angle error (arouti degrees); indeed, the values ®f obtained
by the devised algorithm show a robustness w.r.t. angledijisstments of the target. Interestingly, this
is observed for the phase-code design as well. In order ustiite how degradation of the value of
the mutual information affects the detection performange, report the corresponding probability of
detection. The detection probabilit§; with energy constraint at the peak (no angle mismatgbif,,
and90th percentile of the curves in Fig. 4 are respectively eqo@l&160, 0.7829, and0.7412. Here, a
fixed probability of false alarmP;, = 10~* is assumed. It can be seen that the detection performance

degrades slightly in the considered scenario.

B. Widely separated MIMO radar systems

In this case, we define

0'2 0'2
SNR, = —f¢,, CNR, = —2F k=1,---,N
R = 5 €s R = 5 Cs — Ly IVR,
Jn,k Jn,k

whereo? , = 1 is the power of the noise, ang , as well ass? , are associated with the target and clutter
power at theith receiver, respectively. We consider examples in WHBNR; } . = SNR and{CNRy }, =
CNR. Furthermore, for this case, the target, clutter, anerfierence are characterized by the covariance

matrices{Rsk}ffjl, {R., }x, and{R,, }, respectively. We consider the exponential correlatioapgh
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Fig. 4. An illustration of the robustness of the values of mhatual information against angle dis-adjustments for trgeit.

for the matrices (see above) with parametgrs }?_, = 0.5, {p., } = 0.5, and{p,, } = (1—1/(2k))0.5,
respectively. Also, we le{fy,, , tmxr = 0.15fp x + 0.25 with f,,, ;. being a random variable uniformly
distributed in[—0.5,0.5]. Note that the results of the monotonic behavior of the psepomethod and
the improvement in the detection performance are similahtse of the colocated case and we do not
report them herein. As opposed to the colocated case, emgloyutual information and J-divergence
leads to different solutions, i.e., the criteria are notegatly equivalent. To address this point, we include
a typical behavior of the rank of the designed code mattixin Fig. 5, the rank of the designed code
matrix A is depicted versus SNR for the information theoretic aatevt, 7 for CNR = 0 dB with the
energy constraint. As expected, various metrics lead feréifit solutions: at low SNR regimes, both the
criteria results in rank-one solutions; by increasing tiNRSM results in the maximum possible rank
for A € C''*5 (i.e., 5) but the achieved rank associated withwill be equal to2. The figure also plots
the rank corresponding to the uncoded system and the randdedcsystem. The former is equal to
and the latter is equal td (a behavior similar to that of the randomly coded system wasmerically
observed for the code matrix of [36] as well as quasi-ortimadevaveforms—see the discussions of Fig.
2). We herein remark on the fact that the solutions (and th& ktehavior) depend on the considered
scenario; e.g.{ f4,, .}, the covariance matrices, etc. However, we numericallyeotesi that\ tends

to increase the rank of the designed code mattiat lower SNRs when compared to te As to the
corresponding detection performance, we observed casekial the designedd according to7 leads

to better detection performance than thatMdfand also vice versa. Indeed, no metric is universally better
than another. Note that the comparison of the aforemerdidiesign criteria for detection performance

improvement is out of the scope of this paper (the interestedler can refer to [26] and references
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Fig. 5. The rank of the code matriA designed based on mutual information and J-divergenceanétmder energy constraint)

versus SNR.

therein for discussions on this point).

Now, we illustrate the effectiveness of the robust codegiesipproach presented in Theorem 3 in
Section V. To this end, we first assume a perfect a priori kadgé for the clutter and interference and
obtain the sought code matrid. Next, we design the robust code matax..;,,s; according to the results
of the Theorem 3. The robust code design problem (see (62@siswith{¢,, »}7_, = {0.1)\mm(R8k)}k,
{Centioy = {03Nmae (R, ) }i, @nd { Ry ;, R) . }x equal to those employed when we had a perfect a
priori knowledge (see above). Then, to examine the robastoéthe code matriced and A, st W.I.L.

uncertainties of the interference, we consider the unicgytaets
||Rvk - Rg,k;HQ < Cn,k’ HRCk - RS,kHQ < CC,k’k =1,2,3

and report the minimum values of the criteffoover the intersection of the above sets versus various
values ofEn,k,qu. Without loss of generality, in Fig. 6 we show the values & thutual information

for this setup foanvk = {0.09Ar42 (R, )} VErsusC = ch Note that in this example, the matrices
{ng}z:1 and the corresponding uncertainty sets for the clutteistits at various receivers are the
same; hence, we use the paraméterto rule the sets. It can be seen that the system with codexmatri
A, opust 1S Mmore robust w.r.t. the uncertainties when compared tbwfta A, i.e., the system employing
the non-robust design. Note that in this figure{at = 0 the value of the robust design is reasonably

larger than the non-robust design because there are uintiedaw.r.t. noise covariancgs®,, }.

®The worst (minimum) value of the criterion can be found usiing results of Appendix C.
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—e— Robust Design

3.251 —6— Non-robust design ||

o 0.5 <1 1.5 2
c,l

Fig. 6. An illustration of the robustness of the devised sthdesign method w.r.t. uncertainties of clutter and ietenfice.

Herein, we set,, » = {0.09Amaz (Ry, )} and show values of1 versus(c,:.

C. Computational complexity

Now we consider the computational complexity of the proposethod. To this end we report the
computational time of the proposed method on a standard BCGRU CoRe i5 3GHz and 4GB RAM.
Due to the fact that the computational times depend on thelogmg starting point, the results have
been averaged o0 random starting points. Table | shows the computationaégirof the proposed
method for the colocated system and the widely separatechssigming the parameters of subsections
VI-A and VI-B, respectively. For the colocated system, nalitimformation and J-divergence lead to the
same performance and hence we report the case of mutuatiation (see Remark 1). It can be seen
that the computational times for the similarity constraint much higher than other constraints in both
colocated and widely separated systems due to the heavgrbofdsolving an SDP at each iteration. We
also numerically observed that in the widely separated,aasee iterations are required to satisfy the
stopping criteriont = 10~ of Algorithm 1 when compared to the colocated one (specialtyenergy
and PAR constraints). Such an observation along with thietfed updating the parameters of QCQP in
Theorem 2 is more involved can explain the higher computatitimes for the widely separated case

comparing to those of the colocated case in the table.

VIlI. CONCLUSION

In this paper, we proposed an information theoretic desigrthodology for the constrained code
design in colocated and widely separated MIMO radar syst&desemployed mutual information and
J-divergence criteria to improve detection performanca ofoving target in the presence of clutter. The

design problem with various constraints including eneRAR, and similarity constraint were cast and
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TABLE |

THE AVERAGE COMPUTATIONAL TIME (IN SEC.) OF THE PROPOSED METHOD IN VARIOUS CASES ON A STANDARBC

Constraint o
Energy | PAR | Similarity
System type (Criterion)

Colocated M) 0.11 | 0.09 7.87
Widely separated A1) 1.10 | 0.80 11.14
Widely separated. ) 1.15 | 0.89 13.46

then a method was devised based on applying minorizatiotrnization (MaMi) technique to obtain
solutions to the design problem for the colocated and thelywiseparated systems. Moreover, we extended
the proposed method to be robust w.r.t. uncertainties ofiaipgmowledge of the clutter/interference.
The effectiveness of the proposed method was illustratatuimerical examples and it was shown that
the system employing the proposed method outperforms otle¢nods. Possible future research topics

include robust code design w.r.t. target Doppler shift.

APPENDIX A

PROOF OFLEMMA 1

Without loss of generality, we prove the Lemma for the fixed 1 in widely separated MIMO systems.

The case of the colocated systems is straightforward. Alimgrto the matrix inversion lemma [21], for

. : Bi1 B T : ,
the block diagonal matrid3; »( = andU = [I,0]" of a proper dimension, we have
Bl By
U"B{\,U = (B11 — BuBy, Bf) ' £ CT. (68)

On the other handpg det(Iy + F1) = logdet(In, + J1). Now, letting A, = A ® P;, and applying

the matrix inversion lemma toI , + J;)~! we have
(INT + Jl)_l =1In, — YkHAk: (Ak'RSkA]C
+ AR, A" + R,)'AY, =C). (69)

Hence, by using (68), (69), and (34) it is concluded flogtdet (I y + f‘l) = log det(UHBl‘j,lU).
In order to prove the convexity of the functidog det(UHBX/}U) w.r.t. B, we resort to the mini-

mization property in [29]. More precisely, for a fixd8 ,(, the matrix¥, = B — Blngleﬁ(: Cy)
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is a solution to

i U, B ) = logdet (U~}
B f(¥,Bp) = logdet (¥71)
_ v o0 By B
subject to <X By = . (70)
00 B By

Hence,U;! = U”B ;U and we haveminy f(¥, By) = logdet(U” B;U) that completes the

proof.

APPENDIX B

PROOF OFLEMMA 2

Using the trace properties, we can write
R{k" v} =R{va (In, © [A© P))b)}

:tr{(INR &® [A ® P]) b’Ugl}

Ngr
=Y tr{Gm[A© P} (with G £ bvy)
k=1

Nr
=[Y" vee(Gui'!)] vec(A © P)
k=1

Ng
—g"(poa) (with g2 vec(Gu™))
k=1
=g"a.
Furthermore, we have

tr{ Yoo R} = tr { Yo (In, ® [A® P)T(In, ® [A® P))"}
Nr Nr
=tr{> Y [A0 Py ulA© PTy}
=1 k=1
Ngr Ngr
=3 (vec[A © P (T @ Yog 1) vec[A © P]
=1 k=1
Nr Nr
=> > (@ op"T] @ Youl(doa)
=1 k=1
Nr Ng .
= [Z > (T ®Yau) © (BB") |a.
=1 k=1
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Similarly, for the term associated with clutter we can writd Yoo R.} = a” [S-1% S0 QH @Y a9 1)@

Therefore tr{¥»(R, + R.)} = a" Ha.

APPENDIXC

THE SOLUTION TO THE PROBLEM IN (66)

According to (65),
AR, A" + R, < AR} + eI n, ) A" + RO, + Gl w.
Therefore,
Y (Ao P)¥ (AR, A" + R,) " (A Py)Y}, =
Y (A®P)"[ARY, + CepIng ) AT + RY o + CGupd N

(AO Py)Yy,
with the equality when

R, =R}, + Cuuln, R =R+ (Cpdng, (71)
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