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Abstract

The problem of transmit code design in multiple-input multiple-output (MIMO) radar systems is

addressed in this paper. The problem is considered in both colocated and widely separated antenna

radars in the presence of signal-dependent interference and target mobility. Due to complexity of exact

expressions of the optimal detector in the MIMO radars, information theoretic criteria are employed as

design metrics which results in a general form of non-convexoptimization problems. In order to tackle

the problem, a novel technique based on the minorization-maximization (MaMi) algorithm is proposed

and solutions are presented under practical constraints onthe transmit code, namely energy constraint,

peak-to-average-power ratio (PAR) constraint, and similarity constraint. Furthermore, the devised method

is extended to be robust against uncertainties of the clutter and interference statistics. Finally, numerical

examples are used to show the performance of the proposed technique in different situations.

Index Terms

Code design, information theoretic criteria, MIMO radar, minorization-maximization, peak-to-average

power ratio, robust

I. INTRODUCTION

Transmit code design is an important design challenge in both single-antenna and multiple-antenna radar

systems, as it is shown to have a significant impact on the performance of such systems [1]. In particular,

multiple-input multiple-output (MIMO) radars, that employ multiple antennas at both the transmitter
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and receiver side, have attracted much interest due to theirflexibility of using different waveforms and

adaptivity for adjusting them to optimize desired performance criteria.

In general, MIMO radars have shown a better detection performance, more accurate estimation of

target parameters, and better resolutions compared to single-antenna radars [2]. There are two well-

known structures for such systems, namelycolocated andwidely separated antenna MIMO radars. In the

latter, the distances between transmit/receive antennas are much larger than the wavelength of transmitted

signals. This leads to statistical independence of the reflected signals from the target which provides

angular diversity and improves detection performance [3].On the other hand, in colocated radars, the

distances between the transmit/receive antennas are abouthalf of the wavelength of the transmitted signals.

In such systems, in contrast to phased-array radars, different waveforms can be transmitted simultaneously

from different transmit antennas. This property is referred to as waveform diversity and provides better

detection performance, better interference rejection, and more flexibility in generating radiation patterns

compared to phased-array radars [2].

Based on the above-mentioned properties, transmit waveform (code) design plays an important role in

determining the performance of both colocated and widely separated MIMO radars, and thus, much work

has been done in this area (see e.g., [2] and references therein). It is worth noting that the waveform

design in such systems depends on several parameters such asmobility of targets, the effect of the

signal-dependent interference (clutter), and practical limitations (e.g., peak-to-average power ratio (PAR)

considerations). Moreover, depending on the desired system, different design criteria might be used, e.g.,

criteria related to detection, estimation, classification, etc. [2].

Several works in the last decades have considered the waveform design for improvement of the detection

performance in single-antenna radars. However, most of theworks are based on simplifying assumptions

such as neglecting the effect of the target mobility (i.e. Doppler shift), treating the clutter as a signal-

independent interference, and/or assuming perfect a priori knowledge of the statistics of interference

[4, 5]. In some other works, clutter is modeled as a wide sensestationary Gaussian process or as a

response to a linear time-invariant system for the sake of simplicity [6]. In [7], the problem of code

design for single-antenna radars in the presence of clutterand target Doppler shift is addressed; then,

signal-to-interference-plus-noise ratio (SINR) at the output of the receiver is maximized as a design

criterion (see also [8]).

In multiple-antenna radars, the problem of code design has been addressed for both colocated [1, 9]

and widely separated radars [10–13]. However, simplifyingassumptions have been made especially on

the target Doppler shift, clutter nature and a priori knowledge about its statistics, as well as practical
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limitations (see e.g., [2, 14, 15] and references therein).Due to complex expressions of exact detection

performance metrics in MIMO radars (if any, [16]), information theoretic criteria [13, 17] or SINR [9, 18]

have been employed as design metrics. Note that in several situations, maximizing information theoretic

criteria can be theoretically justified while the maximization of SINR can not necessarily [15, 17, 19].

Another important issue in code design problems is practical limitations. As an important example,

in many applications, the sought code is supposed to be constant-amplitude/PAR-limited. However, this

fact is usually not considered [18] or is partially cared about. In other words, in several works, the code

design problem is dealt with no PAR constraint and then, a PAR-constrained code is synthesized from

the solution of the unconstrained problem. This procedure is associated with a significant performance

loss (see e.g., [6, 18, 20]).

In this paper, we consider the problem of transmit code design for both colocated and widely separated

MIMO radar systems in the presence of clutter. The aim is to improve the detection performance of a

moving target while dealing with practical/implementation limitations as well as uncertainties in a priori

knowledge of the interference. To this end, we employ an information-theoretic approach and cast the

problem of code design via maximization of information-theoretic criteria; namely,mutual information

and J-divergence. To account for the mostly common used practical/implementation limitations in the

radar signal design literature, energy, PAR, and similarity constraints are imposed to the design problems.

The constrained design problems are non-convex but all havea structure with respect to (w.r.t.) positive

semidefinite (psd) matrices (which can be assumed to be related to the SINR of the optimal detector) and

can be exploited to tackle the problems. Therefore, we devise a general method to obtain quality solutions

to the design problems associated with the design metrics. The method is based on applyingminorization-

maximization technique to the functions of scalars/psd matrices and leads to obtain stationary points of the

problems under some mild conditions. We further robustify the design method to handle uncertainties w.r.t.

a priori knowledge of the clutter and (signal-independent)interference, which leads to multi-objective

optimization problems. To the best of our knowledge, no information-theoretic code design methodology

is addressed in the literature for robust constrained code design. The previous methods mostly design

the code via a relaxation of a constraint and then, synthesize the code to satisfy the desired constraint.

Moreover, they usually assume a perfect knowledge of the interference [9, 20].

The rest of this paper is organized as follows. In Section II,the signal and system model for the

moving target in the presence of clutter is introduced whichincorporates both colocated and widely

separated MIMO systems. This section also presents the optimal detector associated with the model.

We cast the constrained code design problems for the design metrics in Section III. This section also
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includes derivations of the proposed method to deal with thedesign problems via an iterative solving of

quadratically constrained quadratic programs (QCQPs). Solving the QCQPs subject to the desired con-

straints is discussed in Section IV. In Section V, the designmethodology is extended to be robust against

interference uncertainties. Numerical results are provided in Section VI to illustrate the performance of

the proposed method. Finally, Section VII concludes the paper.

Notation: Bold lowercase letters and bold uppercase letters are used for vectors and matrices respec-

tively. IN represents the identity matrix inCN×N . 1 and0 are the all-one and the all-zero vectors/matrices.

The Frobenius norm of a matrixX is denoted by‖X‖2F whereas the spectral norm ofX is denoted

by ‖X‖2. The l2-norm of a vectorx is denoted by‖x‖22. We show vector/matrix transpose by(·)T ,

the complex conjugate by(·)∗, and the Hermitian by(·)H . The symbol⊙ stands for element-wise

Hadamard product of matrices/vectors. tr(·) is the trace of a square matrix. The notationsλmax(·) and

λmin(·) indicate the principal and the minor eigenvalues of a Hermitian matrix, respectively. blkDiag(.)

denotes the block diagonal matrix formed by its arguments. vec(X) denotes the column-wise stacking

of the elements of matrixX . E{·} andℜ(·) stand for the statistical expectation and real-part operators

respectively. The symbolCN (ω,Σ) denotes the circularly symmetric complex Gaussian distribution with

meanω and covarianceΣ. R+ represents non-negative real numbers. The notationA ≻ B (A � B)

impliesA−B is positive (semi)definite. Finally,SN+ denotes the psd cone inCN×N .

II. PRELIMINARIES

A. Signal and System Model

We consider a MIMO radar system withNT transmitter andNR receiver antennas. Letam =

[am(1), . . . , am(N)]T ∈ CN denote the transmit signal (code) from themth transmit antenna withN

being the length of the code.

1) Colocated MIMO Radars: In the considered colocated MIMO radar, the distance among transmitter

antennas is assumed to be sufficiently small such that the reflected signals from a target are correlated

across the array and hence the whole array see the target at the directionθ0 with the reflection coefficient

α0. Moreover, it is supposed thatL clutter patches located atθ1, · · · , θL interfere with the target detection

at the cell under test. Therefore,r̃(n), theNR×1 vector of the received samples for the stationary target

at the cell under test at the time indexn is given by [9]1:

r̃(n) = α0sr(θ0)s
T
t (θ0)sco(n)

1A single target is assumed at the cell under test [2, 10] but the radar can deal with multi-target in the detection range.
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+

L∑

l=1

αlsr(θl)s
T
t (θl)sco(n)

︸ ︷︷ ︸
c̃(n)

+ṽ(n), n = 1, · · · , N, (1)

wheresr(θ),st(θ), c̃(n), and ṽ(n) are the receive array steering vector2, transmit array steering vector,

clutter, and (signal-independent) interference, respectively. Herein, sco(n) = [a1(n), · · · , aNT
(n)]T ∈

CNT denotes the transmit signal vector of the system at the time indexn. Moreover,α0 andαl denote

the reflected coefficients associated with the radar cross section (RCS) as well as the propagation effects

of the target and thelth interference source, respectively. Then, considering target Doppler shift and

rearrangingX = [r̃(1), · · · , r̃(N)]T andV = [ṽ(1), · · · , ṽ(N)]T , the model in (1) is modified as

X = α0(A⊙ P )Ψ(θ0)︸ ︷︷ ︸
S

+A

L∑

l=1

αlΨ(θl) + V , (2)

whereX ∈ CN×NR is the received signal matrix from the target at the cell under test contaminated with

the clutter componentC = A
∑L

l=1 αlΨ(θl) as well as the interference componentV . Herein,Ψ(θ)

is the steering matrix corresponding to the look angleθ given byΨ(θ) = st(θ)s
T
r (θ) ∈ CNT×NR and

A ∈ CN×NT is the transmit code matrix (to be designed) withAn,m = am(n). Note that according to the

definitions ofam andsco(n), we haveA =
[
a1,a2,a3, . . . ,aNt

]
=

[
sco(1), sco(2), sco(3), . . . , sco(N)

]T
.

Also, the matrixP = [pd, ...,pd] ∈ CN×NT is the temporal steering matrix associated with target Doppler

shift with pd = [1, exp(j2πfd), ..., exp(j2πfd(N − 1))]T , where fd is the normalized Doppler shift

associated with the moving target.

The covariance matrix of the signal componentS can be found using Kronecker properties [21] as

Rs =E

{
vec

(
α0(A⊙ P )Ψ(θ0)

)
vec

(
α0(A⊙ P )Ψ(θ0)

)H}

=
(
INR
⊗ [A⊙ P ]

)
T (INR

⊗ [A⊙P ])H ∈ SNNR

+ (3)

whereT = σ2
svec(Ψ(θ0)) vec(Ψ(θ0))

H , bbH andσ2
s = E{α0α

∗
0}. Following the same procedure, for

the covariance matrix of the clutter componentC we have

Rc =(INR
⊗A)Q (INR

⊗A)H , (4)

2Assuming uniformly spaced linear arrays, the vectorst(θ) is given by

st(θ) = [1, exp(j 2πfc
c

dt sin(θ)), · · · , exp(j
2πfc

c
dt sin(θ)(NT − 1))]T , wherec is the wave (light) speed,fc is the carrier

frequency anddt denotes the inter-element spacing between transmit antennas. Note that a similar equation holds for the receive

steering vectorsr(θ).
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whereQ =
∑L

l=1 σ
2
c,lvec(Ψ(θl))vec(Ψ(θl))

H andσ2
c,l = E{αlα

∗
l }, and finally,

Rv = E{vec(V )vec(V )H}. (5)

It is worth noting that with the assumption of zero Doppler shift, the model is compatible to that of [14],

and by neglecting the clutter, the model is simplified to the one in [22] (see also [23]).

2) Widely Separated MIMO Radars: In widely separated MIMO radar systems, the distance among

array elements is assumed to be sufficiently large such that the (possible) target or clutter provides

uncorrelated reflection coefficients between each pair of radar transmitter and receiver [3]. Therefore,rk,

the reflected signal (vector) at thekth receiver can be modeled in the discrete-time domain at thecell

under test as [2, 15]

rk = swi,k + ck + vk, k = 1, 2, · · · , NR, (6)

whererk ∈ CN , vk is the signal-independent interference at thekth receiver, andswi,k is the received

signal from the target which can be written as

swi,k =

NT∑

m=1

(αm,kam ⊙ pm,k), k = 1, · · · , NR, (7)

with αm,k being the reflection coefficient accounting for the target RCS and the propagation effects

associated with themth transmitter and thekth receiver. In (7),pm,k is the temporal steering vector from

themth transmitter to thekth receiver withpm,k = [1, exp(j2πfdm,k
), · · · , exp(j2πfdm,k

(N − 1))]T , in

which fdm,k
is the normalized Doppler shift associated with emitted signal from themth transmit antenna

and captured at thekth receive antenna (which also depends on the angle between the target and the

antennas). In widely separated antenna radar systems, there are different reflection coefficients for the

target at thekth receiver denoted byαk = [α1,k, · · · , αNT ,k]
T ∈ CNT . Therefore, the echo of the moving

target at thekth receiver can be written as

swi,k = (A⊙ P k)αk, k = 1, · · · , NR, (8)

with P k = [p1,k, · · · ,pNT ,k] ∈ CN×NT and A is the matrix code as in the colocated MIMO case.

Furthermore, in (6),ck can be expressed asck = Aβk, whereβk ∈ CNT is the vector associated with

clutter component at thekth receiver antenna [14, 15]. Thus, we can reformulate (6) as3

rk = (A⊙ P k)αk +Aβk + vk, k = 1, 2, · · · , NR. (9)

3The presented model for the colocated and widely separated MIMO radars addresses an ideal beam pattern for the antennas;

however, the effects of the imperfect beampatters can be incorporated into the model (see e.g., [7] and references therein for

details).
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Similar to the colocated case, we can defineX = [r1, r2, ..., rNR
] ∈ CN×NR and rewrite (9) as

X = S +C + V , (10)

whereS = [(A⊙ P 1)α1, ..., (A ⊙ PNR
)αNR

], C = A[β1,β2, ...,βNR
], andV = [v1,v2, · · · ,vNR

].

It should be noted that the reflection coefficients at variousreceivers are uncorrelated in widely separated

MIMO radars and hence, the covariance matrices can be obtained as4

Rs =blkDiag
[
E{[(A ⊙ P 1)α1][(A⊙ P 1)α1]

H}, · · · ,

E{[(A⊙ PNR
)αNR

][(A⊙ PNR
)αNR

]H}
]

=blkDiag
[
(A⊙ P 1)Rs1

(A⊙ P 1)
H , · · · ,

(A⊙ PNR
)RsNR

(A⊙ PNR
)H

]
, (11)

in which Rsk
= E[αkα

H
k ] ∈ SNT

+ . Similarly, we have

Rc =blkDiag(ARc1
AH , . . . ,ARcNR

AH), (12)

Rv =blkDiag(Rv1
, . . . ,RvNR

),

whereRck
= E[βkβ

H
k ] andRvk

= E[vkv
H
k ].

B. Optimal Detector

In both cases of the colocated and the widely separated MIMO radars, the target detection problem

leads to the following binary hypothesis test




H0 : x = c+ v

H1 : x = s+ c+ v

(13)

wherex = vec(X) ∈ CNNR , s = vec(S), c = vec(C), andv = vec(V ) are assumed to be Gaussian

random vectors [2, 6]. Definingy , D−1/2x with D = Rc +Rv, the underlying detection problem is

equivalently expressed as [24] 



H0 : y ∼ CN (0, INNR
)

H1 : y ∼ CN (0, INNR
+ F )

(14)

4Note that the devised methodology in this paper can also be applied to the cases for which the aforementioned assumption

does not hold.
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whereF = D− 1

2RsD
− 1

2 = ŨΛŨ
H

with Λ being a diagonal matrix containing eigenvalues ofF and

columns ofŨ are the associated eigenvectors. Therefore, the canonicalform of the optimal Neyman-

Pearson (NP) detector is given by [24]

NNR∑

n=1

λn |zn|
2

1 + λn

H1

≷
H0

η, (15)

whereλn are eigenvalues ofF , η is the detection threshold, andz = [z1, · · · , zNNR
]T = Ũ

H
y.

In the case of widely separated MIMO radars, the matrixF is block-diagonal with blocks

{F̃ k}
NR

k=1 = {D
−1/2
k (A⊙ P k)Rsk

(A⊙ P k)
HD

−1/2
k }NR

k=1,

whereDk = ARck
AH+Rvk

(see (11) and (12)). Now, lettingUkΛ̃kU
H

k denote the eigen-decomposition

of F̃ k, the canonical form of the optimal NP detector becomes

NR∑

k=1

N∑

n=1

λ̃n,k |z̃n,k|
2

1 + λ̃n,k

H1

≷
H0

η, (16)

where z̃k = [z̃1,k, · · · , z̃N,k]
T =U

H
k D

−1/2
k rk, rk is given in (6), and̃λn,k is thenth eigenvalue of the

matrix F̃ k.

III. T HE PROPOSEDMETHOD

The aim is to design the code matrixA to improve the detection performance of the presented optimal

detector. In this section, we consider a knowledge-based (cognitive) system such that the second-order

statistics of the target, clutter, and interference are known at the design stage. This can be fulfilled using

geological and meteorological data as well as data of previous scans in a cognitive setup. However, in

Section V, we extend the proposed method to deal with uncertainties in prior knowledge of interference

via employing a robust approach.

The detector presented in Section II-B is optimal in the sense that it maximizes probability of detection

while keeping probability of false-alarm below a certain threshold. However, in most cases, finding

the best transmission code that maximizes the performance of the optimal detector is not analytically

tractable. In such cases, other design criteria referred toasinformation-theoretic criteria can be employed

for transmission code design [15, 19]. Herein, we employ mutual information and J-divergence as the

information theoretic criteria for the code design. These metrics give some bounds on the performance

of the optimal detector, i.e., maximizing each of them enhances the performance of the detector (see [15,

17, 25, 26] and references therein for detailed discussionsand the justification of using such metrics).
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A. Colocated MIMO radars

It is shown in [17] that maximizing the mutual information (M) between the received signal and the

target response leads to a better detection performance in the case of Gaussian distributions. Using the

results of [25], theM metric associated with (14) is given by

M = log[(πe)N det(INNR
+D− 1

2RsD
− 1

2 )]− log[(πe)N det(INNR
)]

= log det (INNR
+ F ) (17)

with e being the Napier constant (e ≈ 2.71). Another information theoretic metric is the J-divergence

(J ) which is used to measure the similarity between two distributionsf0 = f(y|H0) andf1 = f(y|H1).

Employing the metric for signal design is based on the Stein Lemma [15]. TheJ metric can be computed

as [26]

E{(L − 1) log(L)|H0} = E{log(L)|H1} − E{log(L)|H0},

whereL is the likelihood ratioL , f(y|H1)/f(y|H0). Applying the above equation to (14) results in

J = tr
{
(F + INNR

)−1 + F − INNR

}
.

Thus, the code design problem for colocated MIMO radars using the aforementioned criteria can be cast

as

max
A,F ,D,Rs

fI(F )

subject to F = D− 1

2RsD
− 1

2 (18)

A ∈ C,

whereI ∈ {M, J }, fM(F ) = log det (INNR
+ F ), andfJ (F ) = tr{(F + INNR

)−1 + F − INNR
}.

In (18), C represents a typical constraint set on the code matrixA. In this paper, the following three

types of constraints on the code matrixA are considered; indeed, the setC represents one of these sets

1) Note that the transmit energy of the system is given by
∑Nt

m=1 ‖am‖
2
2 =

∑N
n=1 ‖sco(n)‖

2
2 = ‖A‖2F .

Therefore, to impose the energy constraint, we let‖A‖2F ≤ es, wherees is the maximum available

transmit energy.

2) PAR constraint, i.e.,‖A‖2F = NNT andmaxn=1,··· ,NNT
|ã(n)|2 ≤ γ, whereã(n) denotes thenth

element of the vector̃a = vec(A), andγ is the maximum PAR level. The PAR constraint can also

be applied column-wise to the matrixA in widely separated MIMO radars (see Section IV-B).
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3) similarity constraint, i.e.,‖A−A0‖
2
F ≤ ǫ, whereA0 is a desired code matrix andǫ is the similarity

threshold.

Imposing these constraints leads to three different optimization problems with the general form of (18).

Note that in general, the stated design problem is non-convex and belongs to a class of NP-hard problems

[27]. However, it can be further viewed thatfM(F ) is a concave function ofF ∈ SNNR

+ whereasfJ (F )

is a convex one.

In order to obtain solutions to the optimization problem in (18), we use minorization-maximization

(MaMi)5 technique, an iterative optimization technique, which maximizes a proper upper bound of the

objective function to find their maxima [28]. In summary, MaMi can be used for obtaining stationary

points of the general maximization problem

max
ω

h(ω), subject toc̄(ω) ≤ 0, (19)

in an iterative way whereh(.) and c̄(.) can be neither concave nor convex. In theith iteration of MaMi,

a so-calledminorizing function p(i)(ω) is found such that

p(i)(ω) ≤ h(ω), ∀ω and p(i)(ω(i−1)) = h(ω(i−1)),

with ω(i−1) being the value ofω in the (i − 1)th iteration. Then, the minorizing functionp(i)(ω) is

maximized in theith iteration rather than the functionh(ω), i.e.,

max
ω

p(i)(ω) subject to c̄(ω) ≤ 0 (20)

to obtainω(i). Logically, p(i)(ω) is chosen such that (20) is easier to solve than (19).

The MaMi method is employed in the following theorem to find a solution to the constrained design

problem in (18). Indeed, Theorem 1 deals with the problem in (18) by iteratively solving a proper QCQP.

The methods for solving the aforementioned QCQP stated in Theorem 1 are presented in Section IV.

Theorem 1: The design problems in (18) forM and J are equivalent. Furthermore, the solution

A = A⋆ to this problem can be obtained iteratively by solving the following QCQP in theith iteration

min
ã

ãHH(i)ã+ 2ℜ
{
(g(i))H ã

}
(21)

subject to ã ∈ C̃,

where ã = vec(A) and C̃ denotes the constraint set (associated withC) imposed onã. The matrices

{H(i)}i � 0 and the vectors{g(i)}i are given below. �

5Also known as majorization-maximization or MM algorithm inthe literature.
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Proof. We begin by noting that the covariance of the signal component Rs is rank-1; namely,Rs = kkH

with k = [INR
⊗ (A⊙ P )] b and b = σsvec(Ψ(θ0)). Now, using the determinant property [21], we

obtain

log det(INNR
+ F ) = log det

(
INNR

+D− 1

2kkHD− 1

2

)
(22)

= log
(
1 + kH(Rc +Rv)

−1k
)
= log

(
1 + J

)

whereJ = kH(Rc +Rv)
−1k ∈ R+. Similarly, by employing the trace inequality [21], we have

tr
{
(INNR

+ F )−1 + F
}
=tr

{
(1 + J)−1 + J

}
+ const.

=J +
1

1 + J
+ const. (23)

Note that the objective functions in (18) are monotonicallyincreasing functions of the scalarJ . Therefore,

the design problems forM and J are equivalent. Consequently, in the sequel, we derive the QCQP

associated with the mutual information6. TheJ metric can be dealt with similarly.

Remark 1: considering the above observation, we note that the objective functions in (18) can be

replaced by the scalarJ . Also, one may considerJ as a type of SINR at the output of the detector and

observe that for the employed model of colocated MIMO radars, code design via maximizing SINR is

equivalent to that of maximizing the information theoreticcriteria. We herein remark on the fact that

SINR maximization has been addressed in the literature for MIMO radar code design but to the best

of our knowledge, they are all based on a synthesis stage/suboptimal procedure to deal with e.g., PAR

constraint or assume a perfect prior knowledge of interference.

The following lemma is the key to employ MaMi technique for the non-convex design problem and

deriving the QCQP.

Lemma 1: For fM(F ) = log det(INNR
+ F ) : SNNR

+ → R+, we have

log det(INNR
+ F ) = log(uHB−1

Mu), (24)

whereu = [1,0T
NNR×1]

T and

BM =


 1 kH

k Rs +Rc +Rv


 ∈ SNNR+1

+ . (25)

Moreover, for any full-column rank matrixU , log det(UHB−1
MU) is convex w.r.t.BM ≻ 0. �

6We can equivalently consider the maximization ofJ ; however, we deal withlog(1 + J) to use the results for the widely

separated case shortly.
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Proof: See Appendix A. �

Using Lemma 1, the solution to (18) for the case ofI =M can be found by considering the equivalent

optimization

max
A∈C,k,BM

log(uHB−1
Mu)

subject to k = [INR
⊗ (A⊙P )] b. (26)

According to Lemma 1, the objective function in (26) is convex w.r.t. B−1
M . More concretely, here, the

matrix U is given by the vectoru and the determinant of the scalaruHB−1
Mu is given byuHB−1

Mu.

Therefore, this term can be minorized using its tangent plane at a givenB̃M as [29]

log(uHB−1
Mu) ≥ log(uHB̃

−1

Mu) + tr{Υ̃(BM − B̃M)},

whereΥ̃ = −B̃
−1

Mu
(
uHB̃

−1

Mu
)−1

uHB̃
−1

M . Moreover, the first term on the right hand side of the above

inequality is constant for a giveñBM. Thus, by definingΥ = −Υ̃ � 0, the optimization problem for

the ith iteration of MaMi can be handled via solving

min
A∈C,k,BM

tr(Υ(i)BM)

subject to k = [INR
⊗ (A⊙P )] b. (27)

whereΥ(i) denotes the matrixΥ at theith iteration. Now, lettingΥ =


 υ11 υ12

υ21 Υ22


 with the same

partitioning as that ofBM in (25), neglecting the constant terms, and using hermitianproperty ofΥ

andRs, the following equivalent problem is obtained for (27)

min
A∈C,Rs,Rc,k

2ℜ
{
kHυ

(i)
21

}
+ tr

{
Υ

(i)
22 (Rs +Rc)

}

subject to Rs = kkH (28)

Rc = (INR
⊗A)Q (INR

⊗A)H

k = [INR
⊗ (A⊙ P )] b.

The optimization problem above is still implicit in terms ofthe code matrixA. Lemma 2 is the key to

obtain explicit expressions in terms ofA.

Lemma 2: Let G = bυH
21, g̃ =

∑NR

k=1 vec
(
Gkk

H
)
, g = (g̃⊙ p̃∗), p̃ = vec(P ), andã = vec(A), where

Gkk ∈ CN×NT is a submatrix ofG containing rows(k− 1)NT + 1 to kNT and columns(k− 1)N + 1

to kN . Then we have

ℜ{kHυ21} = ℜ{g
H ã}, (29)
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tr{Υ22(Rs +Rc)} = ãHH ã,

where

H =

NR∑

l=1

NR∑

k=1

[
(TH

kl ⊗Υ22,lk)⊙ (p̃p̃H)T +QH
kl ⊗Υ22,lk

]
,

in which T kl and Qkl are submatrices ofT and Q (see (3) and (4)), respectively, containing rows

(k− 1)NT +1 to kNT and columns(l− 1)NT +1 to lNT , andΥ22,lk is a submatrix ofΥ22 containing

rows (l − 1)N + 1 to lN and columns(k − 1)N + 1 to kN . �

Proof: See Appendix B. �

Now, by applying Lemma 2 to (28), we have the following equivalent optimization problem in theith

iteration

min
ã

ãHH(i)ã+ 2ℜ{(g(i))H ã} (30)

subject to ã ∈ C̃,

in which H(i) andg(i) are available using eq. (29) and it completes the proof of Theorem 1. �

B. Widely separated MIMO radars

For widely separated MIMO radars, the information theoretic criteriaM andJ are given by

M =

NR∑

k=1

log det(IN + F̃ k), (31)

J =

NR∑

k=1

tr{(IN + F̃ k)
−1 + F̃ k − IN},

and therefore, the corresponding constrained design problems can be cast as

max
A∈C,{F̃ k}

NR∑

k=1

fW,I(F̃ k)

subject to F̃ k = D
− 1

2

k Rsk
D

− 1

2

k , (32)

whereI ∈ {M,J }, fW,M(F̃ k) = log det(IN + F̃ k), andfW,J (F̃ k) = tr{(IN + F̃ k)
−1 + F̃ k − IN}.

It should be noted that the above constrained design problemis non-convex. Furthermore in this case, as

opposed to the colocated case, the results of employingM andJ metrics are not generally equivalent

(see Section VI-B). This is due to the fact that the covariance matrix of the target componentRs is no

longer rank-1. Therefore, the following theorem that presents the results for the widely separated antenna

case is proved for each metric separately.
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Theorem 2: The solutionA = A⋆ to the optimization problem (32) can be obtained iteratively by

solving the following QCQP in theith iteration

min
ã

ãHH
(i)
W ,Iã+ 2 ℜ

{
(g

(i)
W ,I)

H
ã
}

(33)

subject to ã ∈ C̃,

where the matrices{H(i)
W ,I}i � 0 and the vectors{g(i)

W ,I}i are defined for each of the information

theoretic metricsI ∈ {M,J } separately in the sequel. �

1) Mutual Information: The case of mutual information (M) is similar to that of the colocated case;

however, here the covariance matrices{Rsk}k can be full-rank. Therefore, we apply MaMi technique to

the functions of psd matrices. LettingRsk = Y kY
H
k ∈ S

NT

+ and by defining

Bk,M =


 Bk,M11

Bk,M12

BH
k,M12

Bk,M22


 ∈ SN+NT

+ , (34)

in which Bk,M11
= INT

, Bk,M12
= Y H

k (A ⊙ P k)
H , andBk,M22

= ARckA
H + (A ⊙ P k)Rsk(A ⊙

P k)
H +Rvk , we have7

NR∑

k=1

log det(IN + F̃ k) =

NR∑

k=1

log det(INT
+ Jk)

=

NR∑

k=1

log det(UHB−1
k,MU) (35)

with U = [INT
0NT×N ]T and

Jk = Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1(A⊙ P k)Y k. (36)

Next, using the results of Lemma 1, (35) can be minorized by its supporting hyperplane at given{B̃k,M}k

as
NR∑

k=1

log det
(
UHB−1

k,MU
)
≥

NR∑

k=1

log det
(
UHB̃

−1

k,MU
)

+

NR∑

k=1

tr
{
Φ̃k

(
Bk,M − B̃k,M

)}
,

whereΦ̃k = −B̃
−1

k,MU
(
UHB̃

−1

k,MU
)−1

UHB̃
−1

k,M. Let the psd matrix−Φ̃k be partitioned in accordance

with Bk,M as



 Φ11,k Φ12,k

Φ21,k Φ22,k



. By neglecting the constants, it can be shown that the following problem

7See (11) for the definition ofRs andRsk .
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is solved in theith iteration of the MaMi procedure

min
A∈C

NR∑

k=1

[tr{(ARckA
H + (A⊙ P k)Rsk(A⊙ P k)

H)Φ
(i)
22,k}

+2ℜ tr{{Y H
k (A⊙ P k)

H
Φ

(i)
21,k}}] (37)

Next, by employing standard Kronecker product properties and some algebraic manipulations, we obtain

the following explicit form w.r.t.ã in the ith iteration

min
ã

ãHH
(i)
M,W ã+ 2 ℜ

{
(g

(i)
M,W)

H
ã
}

(38)

subject to ã ∈ C̃,

where by defining̃pk = vec(P k) we let

H
(i)
M,W =

NR∑

k=1

[(RH
sk ⊗Φ

(i)
22,k)⊙ (p̃kp̃

H
k )T +RH

ck ⊗Φ
(i)
22,k],

g
(i)
M,W =

NR∑

k=1

vec(Φ
(i)
21,kY

H
k )⊙ p̃∗

k.

2) J-divergence: For this case, the objective function isfJ =
∑NR

k=1 tr{(IN + F̃ k)
−1 + F̃ k − IN}.

Using the trace identity and the fact thatRsk = Y kY
H
k , we have

tr{(IN + F̃ k)
−1 + F̃ k − IN} = tr{(INT

+ Jk)
−1 + Jk}+ const.,

whereJk is defined in (36). Now, we first observe that the functiontr{(INT
+ Jk)

−1} is convex w.r.t.

the psd matrixJk. Therefore, a linear minorizer is available considering the tangent plane at a giveñJk

tr{(INT
+ Jk)

−1} ≥ tr{(INT
+ J̃k)

−1}

− tr{(INT
+ J̃k)

−2(Jk − J̃k)}. (39)

The above minorizer leads to the following optimization in the ith iteration

max
A∈C,{Jk}

NR∑

k=1

tr{L
(i)
k Jk} (40)

subject to Jk = Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1

(A⊙ P k)Y k.

with L
(i)
k , INT

− (INT
+ Jk

(i))−2. It should be noted that the matrices{L(i)
k }k are psd∀ k, i, since

λmin(INT
+ Jk) ≥ 1. Therefore, there exists a matrixE(i)

k such thatL(i) = E
(i)
k E

(i)
k

H
and thus, we

February 19, 2017 DRAFT



16

have the following equivalent form for (40)

max
A∈C

NR∑

k=1

tr{INT
+E

(i)
k

H
Y H

k (A⊙ P k)
H (41)

(ARckA
H +Rvk)

−1(A⊙ P k)Y kE
(i)
k }.

Using tricks similar to those of the mutual information case, the objective function in (41) can be rewritten

as a convex function of auxiliary matrices which lays the ground for applying the MaMi technique. More

precisely, by definingΓ , INT
+E

(i)
k

H
Y H

k (A⊙P k)
H(ARckA

H +Rvk)
−1(A⊙P k)Y kE

(i)
k and using

the matrix inversion Lemma, it is observed thatΓ = UHB−1
J U whereU = [INT

0NT×N ]T and

Bk,J =


 Bk,J11

Bk,J12

BH
k,J12

Bk,J22


 (42)

with Bk,J11
= INT

, Bk,J12
= E

(i)
k

H
Y H

k (A⊙P k)
H , andBk,J22

= ARckA
H+(A⊙P k)Y kL

(i)
k Y H

k (A⊙

P k)
H+Rvk . Furthermore, using a proof similar to that of Lemma 1, it canbe shown thattr(UHB−1

k,JU)

is convex w.r.t.Bk,J ≻ 0. Therefore, the solution to (41) in theith iteration can be obtained via solving

max
A∈C,Bk,J

NR∑

k=1

tr{UHB
−1(i)
k,J U}, (43)

which is non-convex. To tackle (43), employing the MaMi technique, we minorizetr{UHB
−1(i)
k,J U}

using its supporting hyperplane at a givenB̃k,J as

tr{UHB−1
k,JU} ≥ tr{UHB̃

−1

k,JU}

− tr{B̃
−1

k,JUUHB̃
−1

k,J (Bk,J − B̃k,J )}.

Consequently, as̃BJ is fixed, the problem in theith iteration turns into

min
A∈C

NR∑

k=1

tr{W
(i)
k Bk,J }, (44)

with W
(i)
k = (B

(i)
k,J )

−1UUH(B
(i)
k,J )

−1 � 0. By partitioningW (i)
k similar to that ofBk,J and neglecting

the constants, we come up with the equivalent problem

min
A∈C

NR∑

k=1

[tr{(ARckA
H

+(A⊙ P k)Y kL
(i)
k Y H

k (A⊙ P k)
H)W

(i)
22,k}

+2ℜ tr{E
(i)
k

H
Y H

k (A⊙ P k)
HW

(i)
21,k}}], (45)
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which can be recast in terms ofã by employing techniques similar to those ofM as

min
ã

ãHH
(i)
J ,W ã+ 2ℜ{(g

(i)
J ,W)H ã}

subject to ã ∈ C̃, (46)

where

H
(i)
J ,W =

NR∑

k=1

[((Y kL
(i)
k Y H

k )⊗W
(i)
22,k)

⊙ (p̃kp̃
H
k )T +RH

ck ⊗W
(i)
22,k],

g
(i)
J ,W =

NR∑

k=1

vec(W
(i)
21,kE

(i)
k

H
Y H

k )⊙ p̃∗
k.

IV. SOLVING THE QCQPIN EACH ITERATION

For both colocated and widely separated MIMO systems, the QCQP in each iteration of the devised

method is in the form of

min
ã

ãH
Hã+ 2 ℜ

{
gH ã

}
(47)

subject to ã ∈ C̃,

whereH andg depend on the scenario (see Theorem 1 and 2). The superscript(i) has been dropped

for the simplicity of the notation.

A. Energy Constraint

In this case, the constraint set is given by‖ã‖22 ≤ es. Therefore, the resulting QCQP is a convex

optimization problem. This problem can be solved using the results of the analytical solution provided

in [30]. It should be noted that applying the energy constraint at each transmit antenna separately in

widely separated MIMO radars does not affect the convexity of the QCQP in (47).

B. Peak-to-Average Power Ratio (PAR) Constraint

For PAR constraint, we consider the problem for the two casesof the colocated and the widely separated

MIMO radar systems.
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a) Colocated MIMO Radars: In this case, transmit antennas are close to each other and hence

the same PAR constraint is applied to the signal transmittedfrom all antennas. Thus, the optimization

problem in theith iteration can be cast as

min
ã

ãH
Hã+ 2 ℜ

{
gH ã

}
(48)

subject to max
n=1,··· ,NNT

|ã(n)|2 ≤ γ

‖ã‖22 = NNT ,

with ã(n) denoting thenth element of the vector̃a andγ being the maximum peak power. The QCQP

in (48) is NP-hard in general [27]. However, it can be equivalently rewritten in the form of

max
â

âH
H̃ â (49)

subject to max
n=1,··· ,NNT

|ã(n)|2 ≤ γ

‖ã‖22 = NNT ,

with â = [ãT , 1]T , H̃ = µINNT+1−K, andK =



 H g

gH 0



 , for anyµ > λmax(K). Now, according

to [15, 27], the problem in (49) can be solved iteratively viasolving the “nearest-vector” problem at the

(l + 1)th iteration

min
ã(l+1)

‖ã(l+1) − a(l)‖22 (50)

subject to max
n=1,··· ,NNT

|ã(l+1)(n)|2 ≤ γ

‖ã(l+1)‖22 = NNT ,

wherea(l) represents the vector containing the firstNNT entries ofH̃â(l). A recursive algorithm is

proposed in [31] for solving (50). It is worth noting that thetotal transmit energy in (50) is considered

to beNNT . However, if another energy level is required, the final solution can be scaled to meet the

desired energy level [15].

b) Widely Separated MIMO Radars: Different PAR constraints (with parametersγk) might be ap-

plied to the code transmitted by each antenna in widely separated systems. Letting̃a = [ãT
1 , ãT

2 , · · · , ã
T
NT

]T , (48)

is modified to

min
ã

ãH
Hã+ 2 ℜ

{
gH ã

}
(51)

subject to max
n=1,··· ,N

|ãk(n)|
2 ≤ γk,∀k

‖ãk‖
2
2 = N, k = 1, · · · , NT .
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whereãk(n) is thenthe element of the vector̃ak. Similar to the colocated case, (51) can be written in

terms ofâ = [ãT , 1]T as

max
ã

âH
H̃ â (52)

subject to max
n=1,··· ,N

|ãk(n)|
2 ≤ γk,∀k

‖ãk‖
2
2 = N, k = 1, · · · , NT .

Iterative tackling of the above problem leads to the following optimization in the(l + 1)th iteration

min
ã(l+1)

‖ã(l+1) − a(l)‖22 (53)

subject to max
n=1,··· ,N

|ã
(l+1)
k (n)|2 ≤ γk,∀k

‖ã
(l+1)
k ‖22 = N, k = 1, · · · , NT .

with a(l) being the firstNNT elements ofH̃â(l) (and being partitioned similar tõa-see above). This

problem is equivalent to

min
{ã(l+1)

k }k

NT∑

k=1

‖ã
(l+1)
k − a

(l)
k ‖

2
2

subject to max
n=1,··· ,N

|ã
(l+1)
k (n)|2 ≤ γk,∀k (54)

‖ã
(l+1)
k ‖22 = N, k = 1, · · · , NT .

Interestingly, the optimization problem in (54) is separable w.r.t. k and hence, can be solved via solving

the following set ofNT problems

min
{ã(l+1)}k

‖ã
(l+1)
k − a

(l)
k ‖

2
2 (55)

subject to max
n=1,··· ,N

|ã
(l+1)
k (n)|2 ≤ γk

‖ã
(l+1)
k ‖22 = N, k = 1, · · · , NT ,

whose solution is similar to that of (50).

C. Similarity Constraint

In this case, the problem of code design at theith iteration can be cast as [20]

min
ã

ãH
Hã+ 2 ℜ

{
gH ã

}
(56)

subject to ‖ã− ã0‖
2
2 ≤ ǫ, ‖ã‖22 = es,
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whereã0 is a code with “good” properties andǫ is the similarity threshold [5, 32]. The QCQP in (56)

has a hidden convexity. Indeed, the semidefinite relaxationof (56) is tight and the resulting SDP can be

written as

min
Z

tr (A1Z) (57)

subject to tr (A2Z) = es, tr (A3Z) ≤ 0, tr (A4Z) = 1,

with Z =



ãã
H ãt∗

ãHt |t|2



 wheret is an auxiliary variable and

A1 = K, A2 =



I 0

0 0



 ,

A3 =



 I −ã0

−ãH
0 ‖ã0‖

2
2 − ǫ



 , A4 =



0 0

0 1



 .

Now, if [(ã⋆)
T t⋆]

T is a solution to (57), theña(k) = ã⋆/t⋆ is an optimal solution to (56) (see

[17, 33]).

The proposed method for dealing with the constrained code design problem is summarized in Algo-

rithm 1. Note that for both colocated and widely separated systems, a QCQP is solved in each iteration

of the proposed method. The parameters of the objective function in the QCQP depends on the system

type (colocated or widely separated) and the employed design metric. We herein remark on the fact that

applying the devised method to the constrained problems leads to a monotonically increasing sequence of

the objective values of the design problem which guaranteesthe convergence of the sequence (see [15, 28]

for details).

Remark 2 (computational complexity): the computational complexity of the proposed method per

iteration can be taken into account8 by noting the fact that according to Algorithm 1, each iteration

of the method consists of first updating the parameters of theassociated QCQP and second, solving the

QCQP. We consider the order of the computational complexity(per iteration) assuming that the matrix

multiplications (and hence e.g. the inverse) can be performed with complexity ofO(n2.3) for a matrix in

Cn×n [34]. Also, without loss of generality, we consider typicalcases in which the complexity for updating

the aforementioned parameters is mainly determined by the required matrix inversions (when compared

to other matrix multipications/manipulations). For the colocated MIMO system, at each iteration, first,

8The computational complexity is linear w.r.t. the number ofiterations.
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Algorithm 1 The Proposed Method for the Constrained Code Design Using Information Theoretic Criteria

I ∈ {J ,M}

1: Initialize ã with a random vector inCNNT and set the iteration numberi to 0.

2: Solve the QCQP of Theorem 1 or Theorem 2 (depending on the desired system and metricI) via

• the results of Section IV-A for the energy constraint,

• considering (50) for the PAR constraint in colocated systems and considering (55) for the PAR

constraint in widely separated systems,

• the results of Section IV-C for the similarity constraint,

to obtainã(i+1); set l← i+ 1.

3: Update the parameters of the objective function in the QCQP of Step 2 according to the desired

system and metricI.

4: Repeat steps 2 and 3 until a pre-defined stop criterion is satisfied, e.g., the change in successive

values of the metric is less than a predefined thresholdξ.

the inverse of the matrixBM must be computed possessing a complexity ofO((NNR)
2.3). Second,

a QCQP must be solve that its computational complexity depends on the constraint set: i) The QCQP

with energy constraint can be solved via the semi-closed-form solution in [30] possessing a complexity

of O((NNT )
2.3). ii) The QCQP for the PAR constraint is NP-hard and is tackledvia an iterative

algorithm. This algorithm is initialized by the computation of the principal eigenvalue of the matrix

K with complexity ofO((NNT )
2); then, each iteration of the aforementioned algorithm is performed

efficiently, e.g., with a complexity ofO(NNT ) for the unimodular case. iii) For the similarity constraint,

the QCQP is recast as an SDP withO((NNT )
4.5) complexity [33]. Using above discussion, the case of

widely separated systems can be dealt with straightforwardly.

V. EXTENSIONS OF THE PROPOSED METHOD

In practice, there might exist uncertainties w.r.t. a priori knowledge of the interference statistics which

should reasonably be considered in the code design stage. Inthis section, we model the uncertainties of

clutter and noise covariances using their spectral norms. That is, for colocated systems, it is assumed

that for covariance matrices of noise and clutter we have

‖Rv −R0‖2 ≤ ζn, ‖Q−Q0‖2 ≤ ζc,
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respectively. For the widely separated case, we suppose different uncertainties at various receive antennas

as

‖Rvk −R0
v,k‖2 ≤ ζn,k, ‖Rck −R0

c,k‖2 ≤ ζc,k, (58)

whereR0,Q0, R0
v,k, andR0

c,k are given psd matrices. Note that the scalar parametersζn, ζc, ζn,k, and

ζc,k rule the corresponding uncertainty regions. In such cases,we can robustify the design via improving

the system performance in the worst case scenario [7, 8, 29].Hence, a robust constrained code design

problem can be cast as

max
A∈C

min
Rv ,Q

fI

subject to ‖Rv −R0‖2 ≤ ζn (59)

‖Q−Q0‖2 ≤ ζc

J = kH [(INR
⊗A)Q(INR

⊗A)H +Rv]
−1k

k = [INR
⊗ (A⊙ P )]b

Rv � 0, Q � 0,

for colocated MIMO radars withI ∈ {M,J } andfM = log(1 + J), fJ = J + 1/(J + 1); and

max
A∈C

min
{Rvk

,Rck
}

fW,I

subject to ‖Rvk −R0
v,k‖2 ≤ ζn,k,∀k (60)

‖Rck −R0
c,k‖2 ≤ ζc,k,∀k

Jk = Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1

(A⊙ P k)Y k

Rvk � 0, Rck � 0,

for widely separated MIMO radars withfW,M =
∑NR

k=1 log det(INT
+Jk) andfW,J =

∑NR

k=1 tr{(INT
+

Jk)
−1 + Jk}. Interestingly, the robust problems above can be dealt withvia the devised methods in

Theorem 1 and 2 considering the results of the following theorem.

Theorem 3: The solutions to the robust design (i.e., max-min) problemsin (59) and (60), can be

obtained by considering the following optimizations, respectively

max
A∈C

fI

subject to J = kH [(INR
⊗A)(Q0 + ζcINTNR

)(INR
⊗A)H
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+(R0 + ζnINNR
)]−1k (61)

k = [INR
⊗ (A⊙ P )] b,

with I ∈ {M,J } andfM = log(1 + J), fJ = J + 1/(J + 1); and

max
A∈C

fW,I (62)

subject to Jk = Y H
k (A⊙ P k)

H [A(R0
c,k + ζc,kINT

)AH

+(R0
v,k + ζn,kIN )]−1(A⊙ P k)Y k,

with fW,M =
∑NR

k=1 log det(INT
+ Jk) andfW,J =

∑NR

k=1 tr{(INT
+ Jk)

−1 + Jk}. �

The problems in (61) and (62) are in the form of the problems inTheorem 1 and 2, respectively.

Therefore, we have the following corollary.

Corollary 1: Solutions to the robust constrained design problems can be obtained by iteratively solving

the stated QCQPs in Theorem 1 and 2 when the matrices{HI} and vectors{gI} are updated according

to the results of Theorem 3 (forI ∈ {M,J }).

Proof. We prove this theorem for the case of widely separated MIMO radars as the colocated one is

straightforward. We consider the inner minimization in (60) and observe that it is separable w.r.t.k.

Furthermore, for everyk, we have

min
Rvk

,Rck
�0

log det (INT
+ Jk)

subject to ‖Rvk −R0
v,k‖2 ≤ ζn,k (63)

‖Rck −R0
c,k‖2 ≤ ζc,k

Jk = Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1

(A⊙ P k)Y k.

Note also that the functionf(X) = log det(IN1
+ X) : SN1

+ → R+ is monotonic w.r.t.X � 0 [20].

Hence, to obtain the solution to the above problem, we consider the following multi-objective optimization

problem

min
Rvk

,Rck
�0

Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1

(A⊙ P k)Y k

subject to ‖Rvk −R0
v,k‖2 ≤ ζn,k (64)

‖Rck −R0
c,k‖2 ≤ ζc,k.

February 19, 2017 DRAFT



24

The constraint in (64) onRvk is indeed

R0
v,k − ζn,kIN � Rvk � R0

v,k + ζn,kIN . (65)

Similarly, for Rck we haveR0
c,k − ζc,kINT

� Rck � R0
c,k + ζc,kINT

. Accordingly, the problem in (64)

boils down to the problem of the following form

min
{Rvk

,Rck
}�0

Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1

(A⊙ P k)Y k

subject to R0
v,k − ζn,kIN � Rvk � R0

v,k + ζn,kIN (66)

R0
c,k − ζc,kINT

� Rck � R0
c,k + ζc,kINT

.

Therefore, the minimizer to the problem in (64) is given by (see Appendix C)

R⋆
vk = R0

v,k + ζn,kIN , R⋆
ck = R0

c,k + ζc,kINT
, (67)

which completes the proof. �

VI. N UMERICAL RESULTS

In this section, we provide several numerical simulations to evaluate the performance of the proposed

code design algorithm for both colocated and widely separated MIMO radar systems. In the simulation

setup, unless otherwise explicitly stated, a MIMO radar with NT = 5 transmit antennas,NR = 3 receive

antennas, and the code lengthN = 11 is considered. As for the constraints, the transmit energyes is

supposed to be equal to1. Moreover, the phase code design is addressed meaning that the PAR constraint

with γ = 1 is imposed to the code design (without loss of generality we assume that the same PAR

constraint is applied to the whole transmitters, i.e., assuming the colcated scenario-see Section IV-B).

For the similarity constraint, the Barker code of lengthN = 11 is considered as the reference code for

each transmitter. Also, a similarity thresholdǫ = 0.75 is taken into account. The proposed method is

initialized by the reference code Barker at each transmitter. The thresholdξ as the stoping criterion of

Algorithm 1 is set to10−4. Moreover, thecvx toolbox [35] is used for solving the convex optimization

problems.
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A. Colocated MIMO Radar Systems

For the collocated system we let the target at the angleθ0 = 25 degrees with normalized Doppler

shift fd = 0.25; also, the number of interfering clutter patches is supposed to beL = 7 aroundθ0, viz.

{θl} = {22, 23, 24, 25, 26, 27, 28}. A homogenous clutter environment is dealt with herein implying that

σc,1 = σc,2 · · · = σc,L. Also, a colored noise with the exponential correlation shape is considered for

which the (m,n)th entry of the covariance matrix isσ2
nρ

|m−n| with σ2
n = 1, ρ = 0.5. For this case,

signal to noise ratio and clutter to noise ratio are defined asSNR= σ2
s

σ2
n

es and CNR=
σ2
c,l

σ2
n

es. Note that

according to Theorem 1, employing mutual information is equivalent to that of J-divergence; therefore,

without loss of generality, in this subsection, we include the results for the mutual information. We

begin by numerically addressing the convergence of the devised method. Fig. 1 shows the values of the

mutual information vs. the number of iterations for SNR= 0 dB and CNR= 0 dB. The values of the

criterion increase by increasing the number of iterations such that the improvement in the successive

iterations reaches the predefined threshold (see Algorithm1). In the constrained designs, smaller values

are observed for the metric compared to the case of just energy constraint due to the smaller feasibility

regions. However, the performance degradation of the phase-code design is negligible which highlights

the effectiveness of the design methodology. This is attributed to the fact that the proposed method directly

deals with the constraint instead of employing a suboptimalsynthesis procedure (see e.g., [9, 20]). Note

that the size of the feasibility region and hence the performance loss for the similarity-constrained case

depends on the value of similarity thresholdǫ.

Next, we illustrate the detection performance associated with the designed code via the proposed method

(shown in Fig. 1). To this end, the receiver operating characteristic (ROC) of the optimal detector (15)

is considered. Fig. 2 shows the ROC for the detector when the system employs the designed code as per

mutual information criterion. The ROC is obtained numerically using the results of [16]. The figure also

includes the performance of the systems employing random coding (with i.i.d. Gaussian elements for the

code), the system with all-one codes (i.e., an uncoded system with a scaled version ofA = 1), the system

with the code matrix obtained by the method in [36], and the system with quasi-orthogonal waveforms

[22][20] at the transmit side. A significant performance improvement can be observed for the system that

employs the designed code when compared to other systems. Such an improvement over quasi-orthogonal

waveforms is also reported in [20]—however, the method in [20] is only applicable for stationary targets

and when the location of the target does not overlap with thatof the clutter patches. Regarding the method

of [36], the improvement can be explained using the fact thatthis method implicitly assumes receivers

February 19, 2017 DRAFT



26

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

Energy constraint

PAR constraint
Similarity constraint

Number of iterations

M
ut

ua
l

in
fo

rm
at

io
n

(M
)

Fig. 1. The values of the mutual information versus the number of iterations for the proposed constrained code design method.
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with matched filters not optimal filters. Similar to Fig. 1, phase-code design has a negligible loss in the

detection probability compared to the energy constraint case which highlights the effectiveness of the

devised method.

The effect of the target Doppler shift on the detection performance in the presence of clutter is illustrated

in Fig. 3. The figure shows the probability of detectionPd vs. normalized target Doppler shift for the

proposed design methodology. In the figure, we set the probability of false alarm toPfa = 10−4,

SNR= 0 dB, and CNR= 10 dB. As expected, when the Doppler shiftfd is near zero, the probability of

detectionPd is small. On the other hand, for a wide-range of the values offd, this figure shows relatively

high detection probabilities. Indeed, in presence of signal-dependent clutter, the target Doppler shift helps

to discriminate the target from the stationary clutter. Similar to Fig. 1 and Fig. 2, the phase-code design

shows a slightly lowerPd compared to the energy constraint case.
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We examine the the robustness of the system performance against angle dis-adjustments of the target for

the proposed method. In Fig. 4 the values of the mutual informationM is plotted versus angle mismatches.

More precisely, we design the code assumingθ0 = 25 but compute the values of the metric for the case

that the target is actually located at some other angleθ 6= 25. Expectedly, such an angle dis-adjustment

for the target results in performance degradation. However, the metric remains at the95th percentile line

for a relatively wide-range of the angle error (around±5 degrees); indeed, the values ofM obtained

by the devised algorithm show a robustness w.r.t. angle dis-adjustments of the target. Interestingly, this

is observed for the phase-code design as well. In order to illustrate how degradation of the value of

the mutual information affects the detection performance,we report the corresponding probability of

detection. The detection probabilityPd with energy constraint at the peak (no angle mismatch),95th,

and90th percentile of the curves in Fig. 4 are respectively equal to 0.8160, 0.7829, and0.7412. Here, a

fixed probability of false alarmPfa = 10−4 is assumed. It can be seen that the detection performance

degrades slightly in the considered scenario.

B. Widely separated MIMO radar systems

In this case, we define

SNRk =
σ2
s,k

σ2
n,k

es, CNRk =
σ2
c,k

σ2
n,k

es k = 1, · · · , NR,

whereσ2
n,k = 1 is the power of the noise, andσ2

s,k as well asσ2
c,k are associated with the target and clutter

power at thekth receiver, respectively. We consider examples in which{SNRk}k = SNR and{CNRk}k =

CNR. Furthermore, for this case, the target, clutter, and interference are characterized by the covariance

matrices{Rsk}
NR

k=1, {Rck}k, and {Rvk}k, respectively. We consider the exponential correlation shape
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Fig. 4. An illustration of the robustness of the values of themutual information against angle dis-adjustments for the target.

for the matrices (see above) with parameters{ρsk}
3
k=1 = 0.5, {ρck} = 0.5, and{ρvk} = (1−1/(2k))0.5,

respectively. Also, we let{fdm,k
}m,k = 0.15fm,k + 0.25 with fm,k being a random variable uniformly

distributed in[−0.5, 0.5]. Note that the results of the monotonic behavior of the proposed method and

the improvement in the detection performance are similar tothose of the colocated case and we do not

report them herein. As opposed to the colocated case, employing mutual information and J-divergence

leads to different solutions, i.e., the criteria are not generally equivalent. To address this point, we include

a typical behavior of the rank of the designed code matrixA. In Fig. 5, the rank of the designed code

matrix A is depicted versus SNR for the information theoretic criteriaM,J for CNR= 0 dB with the

energy constraint. As expected, various metrics lead to different solutions: at low SNR regimes, both the

criteria results in rank-one solutions; by increasing the SNR,M results in the maximum possible rank

for A ∈ C11×5 (i.e., 5) but the achieved rank associated withJ will be equal to2. The figure also plots

the rank corresponding to the uncoded system and the random coded system. The former is equal to1

and the latter is equal to5 (a behavior similar to that of the randomly coded system was numerically

observed for the code matrix of [36] as well as quasi-orthogonal waveforms–see the discussions of Fig.

2). We herein remark on the fact that the solutions (and the rank behavior) depend on the considered

scenario; e.g.,{fdm,k
}, the covariance matrices, etc. However, we numerically observed thatM tends

to increase the rank of the designed code matrixA at lower SNRs when compared to theJ . As to the

corresponding detection performance, we observed cases inwhich the designedA according toJ leads

to better detection performance than that ofM and also vice versa. Indeed, no metric is universally better

than another. Note that the comparison of the aforementioned design criteria for detection performance

improvement is out of the scope of this paper (the interestedreader can refer to [26] and references
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therein for discussions on this point).

Now, we illustrate the effectiveness of the robust code design approach presented in Theorem 3 in

Section V. To this end, we first assume a perfect a priori knowledge for the clutter and interference and

obtain the sought code matrixA. Next, we design the robust code matrixArobust according to the results

of the Theorem 3. The robust code design problem (see (62)) iscast with{ζn,k}3k=1 = {0.1λmax(R
0
vk)}k,

{ζc,k}
3
k=1 = {0.3λmax(R

0
ck)}k, and {R0

v,k,R
0
c,k}k equal to those employed when we had a perfect a

priori knowledge (see above). Then, to examine the robustness of the code matricesA andArobust w.r.t.

uncertainties of the interference, we consider the uncertainty sets

‖Rvk −R0
v,k‖2 ≤ ζ̃n,k, ‖Rck −R0

c,k‖2 ≤ ζ̃c,k, k = 1, 2, 3

and report the minimum values of the criterion9 over the intersection of the above sets versus various

values ofζ̃n,k, ζ̃c,k. Without loss of generality, in Fig. 6 we show the values of the mutual information

for this setup forζ̃n,k = {0.09λmax(Rvk)}k versusζc,1 , ζ̃c,k. Note that in this example, the matrices

{R0
c,k}

3
k=1 and the corresponding uncertainty sets for the clutter statistics at various receivers are the

same; hence, we use the parameterζc,1 to rule the sets. It can be seen that the system with code matrix

Arobust is more robust w.r.t. the uncertainties when compared to that with A, i.e., the system employing

the non-robust design. Note that in this figure, atζc,1 = 0 the value of the robust design is reasonably

larger than the non-robust design because there are uncertainties w.r.t. noise covariances{Rvk}k.

9The worst (minimum) value of the criterion can be found usingthe results of Appendix C.
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Fig. 6. An illustration of the robustness of the devised robust design method w.r.t. uncertainties of clutter and interference.

Herein, we set̃ζn,k = {0.09λmax(Rvk)}k and show values ofM versusζc,1.

C. Computational complexity

Now we consider the computational complexity of the proposed method. To this end we report the

computational time of the proposed method on a standard PC with CPU CoRe i5 3GHz and 4GB RAM.

Due to the fact that the computational times depend on the employed starting point, the results have

been averaged on20 random starting points. Table I shows the computational times of the proposed

method for the colocated system and the widely separated oneassuming the parameters of subsections

VI-A and VI-B, respectively. For the colocated system, mutual information and J-divergence lead to the

same performance and hence we report the case of mutual information (see Remark 1). It can be seen

that the computational times for the similarity constraintare much higher than other constraints in both

colocated and widely separated systems due to the heavy burden of solving an SDP at each iteration. We

also numerically observed that in the widely separated case, more iterations are required to satisfy the

stopping criterionξ = 10−4 of Algorithm 1 when compared to the colocated one (speciallyfor energy

and PAR constraints). Such an observation along with the fact that updating the parameters of QCQP in

Theorem 2 is more involved can explain the higher computational times for the widely separated case

comparing to those of the colocated case in the table.

VII. C ONCLUSION

In this paper, we proposed an information theoretic design methodology for the constrained code

design in colocated and widely separated MIMO radar systems. We employed mutual information and

J-divergence criteria to improve detection performance ofa moving target in the presence of clutter. The

design problem with various constraints including energy,PAR, and similarity constraint were cast and
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TABLE I

THE AVERAGE COMPUTATIONAL TIME (IN SEC.) OF THE PROPOSED METHOD IN VARIOUS CASES ON A STANDARDPC

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

System type (Criterion)

Constraint
Energy PAR Similarity

Colocated (M) 0.11 0.09 7.87

Widely separated (M) 1.10 0.80 11.14

Widely separated (J ) 1.15 0.89 13.46

then a method was devised based on applying minorization-maximization (MaMi) technique to obtain

solutions to the design problem for the colocated and the widely separated systems. Moreover, we extended

the proposed method to be robust w.r.t. uncertainties of a priori knowledge of the clutter/interference.

The effectiveness of the proposed method was illustrated innumerical examples and it was shown that

the system employing the proposed method outperforms othermethods. Possible future research topics

include robust code design w.r.t. target Doppler shift.

APPENDIX A

PROOF OFLEMMA 1

Without loss of generality, we prove the Lemma for the fixedk = 1 in widely separated MIMO systems.

The case of the colocated systems is straightforward. According to the matrix inversion lemma [21], for

the block diagonal matrixB1,M =


 B11 B12

BH
12 B22


 andU = [I,0]T of a proper dimension, we have

UHB−1
1,MU = (B11 −B12B

−1
22 B

H
12)

−1 , C−1
1 . (68)

On the other hand,log det(IN + F̃ 1) = log det(INT
+ J1). Now, letting Âk = A ⊙ P k and applying

the matrix inversion lemma to(INT
+ J1)

−1 we have

(INT
+ J1)

−1 = INT
− Y H

k Â
H
k (ÂkRskÂ

H
k

+ARckA
H +Rv)

−1ÂkY k = C1. (69)

Hence, by using (68), (69), and (34) it is concluded thatlog det(IN + F̃ 1) = log det(UHB−1
1,MU).

In order to prove the convexity of the functionlog det(UHB−1
MU ) w.r.t. BM we resort to the mini-

mization property in [29]. More precisely, for a fixedBM, the matrixΨ⋆ = B11−B12B
−1
22 B

H
12(= C1)
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is a solution to

min
BM,Ψ≻0

f(Ψ,BM) = log det
(
Ψ−1

)

subject to


Ψ 0

0 0


 � BM =


B11 B12

BH
12 B22


 . (70)

Hence,Ψ−1
⋆ = UHB−1

MU and we haveminΨ f(Ψ,BM) = log det(UHB−1
MU) that completes the

proof.

APPENDIX B

PROOF OFLEMMA 2

Using the trace properties, we can write

ℜ{kHυ21} =ℜ{υ21((INR
⊗ [A⊙ P ])b)}

=tr{(INR
⊗ [A⊙ P ]) bυ21}

=

NR∑

k=1

tr {Gkk[A⊙ P ]} (with G , bυ21)

=
[ NR∑

k=1

vec(Gkk
H)

]H
vec(A⊙ P )

=g̃H(p̃⊙ ã) (with g̃ ,
NR∑

k=1

vec(Gkk
H))

=gH ã.

Furthermore, we have

tr{Υ22Rs} = tr
{
Υ22(INR

⊗ [A⊙ P ])T (INR
⊗ [A⊙ P ])H

}

=tr
{ NR∑

l=1

NR∑

k=1

[A⊙ P ]HΥ22,lk[A⊙P ]T kl

}

=

NR∑

l=1

NR∑

k=1

(vec[A⊙ P ])H(TH
kl ⊗Υ22,lk)vec[A⊙ P ]

=

NR∑

l=1

NR∑

k=1

(ãH ⊙ p̃H)[TH
kl ⊗Υ22,lk](p̃⊙ ã)

=ãH

[ NR∑

l=1

NR∑

k=1

(
TH

kl ⊗Υ22,lk

)
⊙
(
p̃p̃H)T

]
ã.
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Similarly, for the term associated with clutter we can writetr {Υ22Rc} = ãH [
∑NR

l=1

∑NR

k=1Q
H
kl⊗Υ22,lk]ã.

Therefore,tr{Υ22(Rs +Rc)} = ãHHã.

APPENDIX C

THE SOLUTION TO THE PROBLEM IN (66)

According to (65),

ARckA
H +Rvk � A(R0

c,k + ζc,kINT
)AH +R0

v,k + ζn,kIN .

Therefore,

Y H
k (A⊙ P k)

H(ARckA
H +Rvk)

−1(A⊙ P k)Y k �

Y H
k (A⊙ P k)

H [A(R0
c,k + ζc,kINT

)AH +R0
v,k + ζn,kIN ]−1

(A⊙P k)Y k,

with the equality when

R⋆
vk = R0

v,k + ζn,kIN , R⋆
ck = R0

c,k + ζc,kINT
, (71)
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