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Abstract

In this paper, we study the joint design of Doppler robushdrait sequence and receive filter to
improve the performance of an active sensing system dealitig signal-dependent interference. The
signal-to-noise-plus-interference (SINR) of the filtetfmut is considered as the performance measure of
the system. The design problem is cast as a max-min optimizptoblem to robustify the system SINR
with respect to the unknown Doppler shifts of the targetstabile the design problem, which belongs to
a class of NP-hard problems, we devise a novel method (whécball DESIDE) to obtain optimized pairs
of transmit sequence and receive filter sharing the desokdstness property. The proposed method is
based on a cyclic maximization of SINR expressions withxedirank-one constraints, and is followed by
a novel synthesis stage. We devise synthesis algorithmigt&anchigh quality pairs of transmit sequence
and receive filter that well approximate the behavior of thémal SINR (of the relaxed problem) with
respect to target Doppler shift. Several numerical example provided to analyze the performance
obtained by DESIDE.
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. INTRODUCTION

The performance of an active sensing system can be sigrilfidamproved by judiciously designing
its transmit sequence and receive filter. Such a design lystels with several challenges including
the fact that Doppler shifts of moving targets are often wwkm at the transmit side, the existence of
signal-dependent interference as well as signal-indegrridterference at the receive side, and practical
constraints such as similarity to a given code.

Joint design of the transmit sequence and the receive fiterbeen considered in a large number of
studies during the last decades. Most of the works have beecemed with either stationary targets or
targets with known Doppler shifts (see e.g. [1]-[8]). In,[8bnsidering a stationary target, a frequency
domain approach has been employed to obtain an optimaleefiker and corresponding optimal energy
spectral density of the transmit signal; then a synthesisqafure has been used to approximately provide
the time domain signal. The works of [10] and [11] consideekated problem to that of [9] under a
peak-to-average power ratio (PAR) constraint. The refarel2] deals with joint design of transmit
sequence and receive filter under a similarity constrairdaiges where the Doppler shift of the target is
known. In [13], constant-modulus transmit sequences ansidered in a framework similar to that of
[12]. Several researches consider signal-independettéckcenarios (see e.g. [14]-[18]). The unknown
Doppler shift of the target has been taken into account i §ifl [18]. The reference [16] considers
Doppler robust code design problem for signal-independtriter cases under a similarity constraint.
The ideas of [16] are generalized in [18] where the PAR cairstis also imposed.

In this paper, we devise a novel method fooppler robust joint design of transmit sequence and
receive filter (which we call DESIDE) in the presence of @uttWe focus on radar systems but the
design methodology can be useful for other active sensistgss such as sonar, seismic exploration,
etc. We consider the SINR at the output of the receive filtehaperformance measure. Besides an energy
constraint, a similarity constraint is imposed on the traihsequence to control certain characteristics
of the transmit waveform. The design problem is cast as a miaxeptimization and shown to belong to
a class of NP-hard problems. We devise a cyclic maximizatiotackle a relaxed version of the design
problem. Furthermore, we propose a synthesis stage tonobydiimized pairs of transmit sequences and
receive filters which possess the desired Doppler robustnes

The rest of this paper is organized as follows. The data nmaglahd problem formulation are presented
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in Section Il. Section Ill contains the steps for the deitwabof the cyclic approach to tackle the relaxed
problem. The required synthesis stage is discussed indBet¥f. Numerical results are provided in
Section V. Finally, conclusions are drawn in Section VI.

Notation:We use bold lowercase letters for vectors and bold uppetetises for matrices(-)”, (-)* and
()" denote the vector/matrix transpose, the complex conjugatkthe Hermitian transpose, respectively.
I represents the identity matrix iV *~. 1 and0 are the all-one and the all-zero vectors/matriegsis
the k*" standard basis vector i@iV. Thel,-norm of a vectorx is denoted byj|x||. The symbolo stands
for the Hadamard (element-wise) product of matrices) ts the trace of a square matrix argument. The
notations\,..(-) and A\ () indicate the principal and the minor eigenvalues of a Heamimatrix,
respectivelyDiag(-) denotes the diagonal matrix formed by the entries of theovemmgument, whereas
diag(-) denotes the vector formed by collecting the diagonal eniethe matrix argument. We write
A > B iff A — B is positive semi-definite, and > B iff A — B is positive-definite X(-) andarg(-)
denote the real-part and the phase angle (in radians) ofaimplex-valued argument. Finalli§, R and

C represent the set of natural, real and complex numbersecaggly.

[I. PROBLEM FORMULATION

We consider a radar system with (slow-time) transmit segeience CV and receive filterw € CV.
The discrete-time received signal backscattered from amgdarget corresponding to the range-azimuth

cell under the test can be modeled as (see, e.g. [12], [18][E5]):
r=arx®p)+c+n, 1)

whereay is a complex parameter associated with backscatteringtei®é the target as well as propagation
effects,p(v) = [1,¢7%,..., e =D¥|T with v being the normalized target Doppler shift (expressed in
radians)c is the N-dimensional column vector containing clutter (signapeledent interference) samples,
andn is the N-dimensional column vector of (signal-independent) iieieance samples. The vecitoiis

the superposition of the returns from different uncoredascatterers located at various range-azimuth

bins and can be expressed as [12]

N.— L—1
¢= Z Z (ki) Ik (S © p(ydu-,i)))
k=0 =0
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where N. < N is the number of range ringshat interfere with the range-azimuth bin of interét0),
L is the number of discrete azimuth secterg, ;) andv,,, , denote the echo and the normalized Doppler
shift, respectively, of the scatterer in the range-azimhith(k, ), andJ; denotes the aperiodic shifting
matrix for0 < k < N, — 1, viz.
Smy = BT e N
0 if Il—-m=#k
with J_, = J7.
The SINR at the output of the receive filter can be formulated a

_ lorPlw? (xop) |

SINR 2
) wiS, (x)w + wiMw @)
whereM £ E{nn’'} and 2. (x) is the covariance matrix of given by [12]
N.—1 L-1
e (x) =Y Y 0ba Tkl (x, (ki)I] (3)
k=0 =0

with o—(Qk 5 =E [lak,»]?] being the mean interfering power associated with the alyisech located
at the (k,i)!" range-azimuth bin whose Doppler shift is supposed to beotmify distributed in the

Va5

interval Q. = (g, — %2, 74, + <%2) [15]. HereinI'(x, (k,i)) = Diag(x)®. ;" Diag(x)" where

q)::;fjj)” (I,m) is the covariance matrix gb(vg,, , ) [12], viz.

1 if l=m

’(l—m)ﬁd ki sin[0.5(l—m)e k,i } H
(s oot Cnes] it 1

D,
B0 (1,m) =

(ILm)e{1,....,N}*. (4
Note that the expression f@f{';ﬁf) (I,m) can be modified to consider cases with an arbitrary staistic
distribution of the Doppler shifts of the clutter scatterer

In this study we assume that the parameters of clutter amalsigdependent interference are known
at the transmit side by using cognitive (knowledge-aidedjhmods [12] [19]. We consider the SINR in
(2) as the performance measure of the system [12] [15] and@ifimd a robust design of the transmit

sequence and the receive filter with respect to the unknowpplo shift of the targét In addition to

INote that the model considers the general case of range amsicclutter and reduces to unambiguous range scenario for
N. = 1. See [12] and [15] for justifications of the employed moded aeveral examples of scenes that can be modeled in this
way.

2The target Doppler shift can be estimated at the receiver,véa a bank of filters matched to different Doppler freqiiesc
[20]; however, the Doppler shifts of the targets are usuaiignown at the transmit side and hence we consider a robsgjrde
with respect to the target Doppler shift. The design appgrozan also be useful for a robust confirmation process, so as to

account for target Doppler estimation errors.
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an energy constraint, a similarity constraint is imposedtentransmit sequence [21] [12] [22]:
Ix —xol* <4, (5)

where the parameter > 0 rules the size of the similarity region ang) is a given sequence. There
are several reasons that justify the use of a similarity traim in the design of a radar sequence. The
unconstrained optimization of SINR can lead to signals wsitinificant modulus variations, poor range
resolution, high peak sidelobe levels, and more generatly an undesired ambiguity function behavior.
These drawbacks can be partially circumvented imposingsthmlarity constraint (5) on the sought
radar code [12] [21] [22]. Comprehensive simulations hagerbperformed in [12] [16] [21] and [23]
to illustrate how the properties of the ambiguity functiang, range resolution, sidelobe levels, etc.)
and modulus variations associated with the optimized caaebe controlled via the value défin the
similarity constraint. By doing so, it is required that the@ution be similar to a known sequenkg which
has some good properties such as constant modulus, resscaradpe resolution, and peak sidelobe level.
The problem of Doppler robust joint design of transmit sempgex and receive filterw under the

similarity constraint can be cast as the following max-mptimization problem

2
: (W’ (xop(v)) ]|
max 1min H H
xw v w3 (x)w+w Mw
p ) subjectto [x[*=e (6)
I —xo|* < 0

vef

whereQ) = [v,1,] C [—7, 7| denotes a given interval of the target Doppler shifand e denotes the
maximum available transmit energy. Note that for a priordkn target Doppler shift (i.e. Q2 = [7, 7)),
the problemP boils down to the considered problem in [12].

Remark 1:Note that a similar discrete-time data modeling and problermulation applies to fast-
time coding systems. In that case, the entriex afenote (complex) weights of the sub-pulses within a
transmit pulse. Moreover, the normalized target Doppléft shis proportional to the system bandwidth
(as opposed to the slow-time scheme for whicis proportional to the pulse repetition frequency of the
system); hence in such a case, the Doppler robust desigrdvibeutoncerned with high speed moving
targets. As to the expressions, the formulation of the damae matrixX, (x) in (3) should be modified.
More precisely, for fast-time coding scenarios, the sunonabver k in (3) should be performed for
0 < |k|] < N — 1. We refer interested readers to the references [10] andff2Ojnore details on this

aspect. |
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To realize the hardness of the above problemzletndx, denote a slack variable and an optimal so-

lution x to the problentP, respectively. The optimaik is obtained via solving the following optimization

problem:
z/
max
w2/ wis, () w + wlMw
subject to w (.7 0 p)p(W)H)w > 2/ ()

Yv € Q.
The above quadratic fractional program can be recast dguily as (see Lemma 2 below and [24]):

max 2

w,z’

subject to w! (2. (%) +M)w <1 ®)

Pnp
wl (%58 © p(r)p()!) w >

Yv e Q.

The optimization problenPyp is a quadratically constrained quadratic program (QCQR) mfinitely
many non-convex constraints. This class of QCQPs is knovletblP-hard in general [16] [25, Chapter
4] [26]. Note that solving the optimization problef with respect to(w,x,v) is at least as hard as
solving the problenPy p.

The following lemma helps tackling the optimization prablé via providing two alternative expres-

sions for the objective function in problef.

Lemma 1. Let X = xx” and W = ww!!. The SINR(v) can be alternatively expressed with respect
to X and W as follows:

_erPp()” (W 0 X*) p(v)
SINR(v) = tr {(Ze (X) + M) W} ©)

lar*p(V)T (W © X*) p(v)

(10)
tr { <®c(W) + (g)l) X}
whereg = tr{MW}, and
N.—1 L-1 >
SX) = Y S oh,d (X © <I>5("','jfjj)”> a7 (11)
k=0 =0
N.—1 L—-1 o "
e.wW) = > Yo, ((J;{ W) © (@Ef;f;;”) ) . (12)
k=0 1=0
Proof: See Appendix A. [ |
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To deal with the design problefR, consider the following optimization problem:

i min PO (WO X)p(v)
XW vt {(Be (X) + M)W}

subject to tr{X} =¢e¢
tr{XXo} > €5

7)/ rank(X) =1 (13)
rank(W) =1

X>0

W >0

veQ
whereX, = xox} ande; = ((2¢—4§)/2)2. Let (W, X) denote an optimal solution to the above problem.
Using Lemma 1 and the results of [21], it can be easily verifleat an optimal solution t@® is given
by (w,x e’ 218 (x"x0)) with W = ww!! and X = xx'’.

Now observe that both the objective function and the rankstramts in?’ are non-convex. In addition,
p(v) belongs to a non-convex set fore €. In the sequel, we relax the rank-one constraintsXoand

W in P’ to obtain the relaxed problef;:

o iy PO (WO X*) p(v)
W (2 (X) + M) W)

subject to tr{X} =¢e¢

P, tr{XXo} > €5 (14)
X>0

W>0

veq.

The expressioHO‘th{‘z(E”c)(H)é)VX%))(;e,‘;(”) for rank-oneX and W (i.e., X = xx and W = ww') is

equal toSINR(v) (see Lemma 1). When the rank constraints are omitted (cearbitraryX = 0 and

- Nar?2p(v)HE (WoOX*)p(v . . .
W z/f))/,the expressiof trgz(zc()é)JrM)“)}; ) may be used in Ileu/?S/INR(u) and it will be denoted
by SINR, ... (v) in the following. SIN R(v) is the restriction ofSINR,..;...(v) over the space of the

rank-one positive semi-definite matric&sand W (due to the relaxation of the rank-one constraints on

X and W). The optimization problen®; is still non-convex and will be discussed in the next section

[Il. THE PROPOSEDMETHOD TO TACKLE THE RELAXED PROBLEMP;

In this section, we devise a novel cyclic algorithm (which eal DESIDE-R as it deals with the

relaxed version of the original problem) to tackle the nomex optimization problen®;. In a cyclic
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algorithm, the optimization variables are partitioneaitwo parts; then, by starting from an initial point,
optimization is cyclically performed with respect to eadrtp(while the another part is fixed) [27]. In

the following, we consider the maximization probleP with respect to(X, W) whereX and W are

the two partitions. The obtained paiW,, X,) which maximizesSIN R, ;.. () will be used later to
synthesize the optimized transmit sequence/receive filiér(x,, w,). The synthesis stage is addressed
in Section IV.

e Optimal X for fixed W:

Lett € R denote a slack variable. For fixa¥, the optimization in (14) is equivalent to the following

maximization problem:

t
max

Xi tr { <®c(W) + (@)I) X}
subject to p(v)! (W o X*)p(v)>t, Yve

P 15
* tr{X} =e (13)
tr{XXp} > €5
X >0.

Note that the above problem is feasible and has a finite-dablgective function over the constraint set
(see eq. (29)). Moreover, problefy is a linear-fractional maximization problem with infinigemany
constraints (see the first constraint in (15)). Inspired thai@es-Cooper transform for tackling linear
fractional programs [28], we le¥ = sX, ¢ = s¢ for an auxiliary variables > 0, and consider the
following optimization problem:

max t
Y, t,s

subject to tr { (@C(W) + (E)I) Y} =1

e

p) T (WoY"pl) >t YveQ

Px tr{Y}=es (16)
tr{YXo} > €55
Y>>0
s> 0.

Lemma 2. The optimization problem®x and P’ are equivalent. More precisely, they share the same

optimal values and their corresponding solutions can bejuely obtained from each other.

Proof: Let (X,,t,) andv(Px) denote an optimal solution and the optimal value of the @bl

Px, respectively. Note that { <®C(W) + (§)I) Y} > 0 because? > 0. It is straightforward to verify
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that

X« ty 1

= (tr {(Ocwy+ ). e {(OctW + ()X wr{ (0w ()X} )
17

is feasible for the probler®’,. Also observe that the value of the objective functiorRf for (Y, ¢, s)

in (17) is given by
T

o { (@e(W) + (D)1) X, }
and note that (18) is equal tPx). Therefore, for the optimal value of the probleRy, i.e. v(PY%),

(18)

we have

v(Py) > v(Px). (19)

Next let (Y., t., s.) denote an optimal solution to the proble®,. Note thats, # 0 becauses, = 0
leads toY, = 0 (a contradiction, see the first constraintt{;). One can check thafY,/s.,t./s.)
is feasible for the problenPx with corresponding objective value equal#p Owing to the fact that

v(PY) = t., the following inequality holds betweern(P’ ) andv(Px):
v(PY) < v(Px). (20)

Finally, egs. (19) and (20) yield(P%) = v(Px) and the proof is concluded. [ |
Now observe thaP’, is a convex problem with infinitely many constraints. To de#h the constraint
set, we note that the constraiptv)? (W o Y*)p(v) > t, Vv € Q implies the non-negativity of a

trigonometric polynomial ofs over the intervak). More specifically, let

N—k
2 2 Z Zivki, 0<k<N-—1, (21)
=1

andz = [z, z1,...,2y_1]7 with Z = W © Y*. It is straightforward to verify that for any € (2, the
aforementioned constraint is equivalent to

N-1
h(v) £ 29—t + 2R <Z Zkejk”> > 0. (22)

k=1
Interestingly, a semidefinite representation of the camsti(22) can be obtained via Theorem 3.4 in [29]

which we quote below.

Theorem 1. The trigonometric ponnomiaiL(u) =Z+ 23‘%( ff;ll Eke*j’“’) is non-negative for any

v € [y — vi,v + 1] (With 0 < vy < 7) iff there exist anN x N Hermitian matrixZ; > 0 and an
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10

(N —1) x (N — 1) Hermitian matrixZs = 0 such that

7 =F{ (diag(F1Z,F{') + q © diag(F2ZoFy)) (23)
wherez = [Zo,Z1,...,2v-1]", 4 = [q0,q1, -, @u_1]T With gz = cos(27k/n — 1) — cos(v1), F1 =
[fo, e 7fN—1] and Fy, = [fo, Ce ,fN_Q] in which f, = [1, eijkg, e ,eij(n*l)ke]T with § = 27r/n, and

n>2N — 1.

Note that an SDP representation of (22) is immediate by eynmmothe above results witg = z,
n=2N—1,vy = (1 +1,)/2, andv; = vy — ;. ConsequentlyP’, is equivalent to the following SDP:

max t
Y,Z,,Z,,t,s

subject to tr { (G)C(W) + (§)I> Y} =1
z = tey + F{ (diag(F1Z1F{) + q © diag(F2Z,F1))
tr{Y} =es
SDPx o {YXo} > €55 (24)
Y >0
Z, >0
Zy >0

s > 0.

Remark 2 The derivation of SDPx can be extended to deal with cases wh@rés a union of
several (non-overlapping) sub-intervals [efr, 7]. More precisely, for each of such sub-intervals, the
SDP representation associated with the correspondingragnts(obtained via Theorem 1) can be added
to the constraint set a§DPx. [ |

Let (Y,Z1,Z-,t,s) denote an optimal solution t6DPx. The corresponding optimaX (i.e., an
optimal solution toPx) for fixed W is given byY /s (see Lemma 2).

e Optimal W for fixed X:

Using Lemma 1,P; can be recast into the following equivalent form for fix&d

C

Wi u{(Z(X) M)W}
Pw 4 subject to p(v) (W o X*)pv) >, VveQ (25)

W >0
where ¢ denotes a slack variable. The above problem can be tackledway similar to the case of

obtainingX for fixed W. In particular, using Lemma 2 as well as Theorem 1, we obtaénfollowing
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11

SDP:

max t
W.Z',Z;,t

subject to tr {(Zc (X) + M)W} =1
SDPy 7' = te; + F{ (diag(F1Z,F{) + q © diag(F2Z,F4))
W=0

(26)

7 =0

Z,>0
wherez’ is given by

N—k
%= Zii 0<k<N-1, (27)
=1

with Z’ = W © X*.

Remark 3It might be interesting in practice to control the shapehef tross-ambiguity function of the
transmit sequence and the receive filtetv. An approach would then be to require that the variakles
andx are sufficiently similar to givervy andxg, respectively, which possess desirable cross-ambiguity
properties. The Doppler robust design for controlling thepe of the cross-ambiguity function could

therefore be cast as the following optimization problem:

2
: w" (xop(v))|
max min — =
xw v Wi (x)w+w Mw

subject to ||x — x| < §

73CTOSS ||W o WO||2 S 6w (28)
Ix[1? = e
vel

whered,, rules the size of the similarity region for the receive filtf€he problenP,,,ss can be tackled
in a way similar to (6). |

The steps of DESIDE-R are summarized in Table |. Each itamadif the proposed method is handled
via solving two SDPs, i.eSDPy andSDPx. The complexity of solving the SDPs with accuracy of
€, is given byO(N35 log(e; 1)) [30]. A synthesis stage is proposed in the next section topctenhigh

quality transmit sequence/receive filter pajsg,, x,) from the solutiong W,, X, ) obtained herein.

e Convergence and thﬁfﬁ\f/Rrelam metric,

By cyclically solving SDPx and SDPy in DESIDE-R, it can be easily verified that the resulting
{min,cq S/I\]\_ﬁ%

(%)

relaz (V) }ren 1S @ monotonically increasing sequence [27]. Furthermaie, cq SIN R, cja. (V)

October 24, 2013 DRAFT



12

TABLE |

DESIDE-RMETHOD FOR SOLVING THE RELAXED PROBLEMP;

Step Q Initialize X with xx™ wherex is a random vector itC" .

Step 1 Solve the problenSDPw in (26) to obtainW.

Step 2 Solve the problen§DPx in (24) to obtainX.

Step 3 Repeat steps 1 and 2 until a pre-defined stop criterion isfigat,
e.g.|minyeq STN Rretas ()" — minyeq STN Ryetas ()| < p for

a givenyu > 0.

is bounded from above; indeed we have that

. ()" (W X*)p(v)
min SINFretaa(v) < S S S0 £ M)
[P(¥)[1* Az (W © X*)
- tr{ MW}
N tr{W} tr{X}
- tr{MW}
< Ne
N )\min(M) '

The third inequality above holds true becatsgfW © X*} < tr{W} tr{X}; and for the last inequality
we have used the fact that{ MW} > \,,;, (M) tr{W} [31]. Eq. (29) along with the increasing property

(29)

(%)

of {min,cq S/I\]\f/}%mlam(u)}ﬂeN ensure the convergence of the sequence of the objectivédonalues.

IV. THE SYNTHESIS STAGE

As discussed earlier, a judicious synthesis of the optithizansmit sequence, and receive filtew,
from the obtained W,, X, ) is required to maintain the Doppler robustnessWf, is rank-one,w, is
available via consideringV, = w,w!; whereas ifX, = xx, for x, we havex, = xe/ @8(x"x0),
The rank behavior of SDP solutions, tightness of the senmidefielaxation, and synthesis methods have
been investigated in the literature (see e.g. [33]-[354 eeferences therein). For example, it is known
that for a solvabl& SDP with A/ constraints, there exists an optimal solution of rank attregsial to
v/ M [33]. However, the result does not ensure the existencentéoae solutions for the case considered
in this paper due to the fact th&DPy and SDPy have N + 3 and N + 1 constraints, respectively.

Herein we remark on the fact that the ranksWf, and X, depend on the employed starting point in

3Meaning that the SDP is feasible, bounded, and its optimlakvis attained (see [30] for more details).
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13

addition to the parameters of the design problem. In casesentine rank of eitheW, or X, is larger
than one, the synthesis &f, or x, is more complicated. To tackle this problem, this sectiatiailly
considers the rank-one decomposition method [36]. Thenevésd novel synthesis algorithms to design

pairs of (w,, x,) possessing the desired robustness.

A. The rank-one decomposition method

The main result of the rank-one decomposition method carubersrized as follows [36]:

Theorem 2. LetX be a non-zerdV x N complex Hermitian positive semidefinite matrix (wiNh> 3) and
{A1,A2, A3, Ay} be Hermitian matrices. Suppose that { YA} ,tr {YAs},tr {YAs}, tr {YA4}) #
(0,0,0,0) for any non-zero complex Hermitian positive semidefinitérimd& of size N x N. Then,

« if rank(X) > 3, one can find, in polynomial time, a rank-one matix/’ such thatx (synthetically

denoted ax = D (X, A1, A9, A3, Ay) ) is in the rangéX), and
xHA;x = tr {XA;}, i=1,2,34;

« if rank(X) = 2, for anyz not in the range space dk, one can find a rank-one matrixx’ such
that x (synthetically denoted as = D»(X, A1, Ay, A3, Ay) ) is in the linear subspace spanned by
{z} UranggX), and

xTAx =tr {XA;}, i=1,234.

Proof: see [36, Theorem 2.3]. [ |

Let (W,, X,) denote an optimal solution t&;, and let
ve = argmin,e, p()! (W, oX)p(). (30)
Considering Theorem 2 and the problé®y,, a suitable rank-one matriw*wiH can be found such that

tr{(Z(Xs) + M) W, } = w/'Qw, (32)
Q
and that
tr{(X* © (p(V*)p(V*)H)) W*} = W,{{Q2W*
Q2
tr{(X* © (p(l//)p(l//)H)) W*} = W,{{Q?’W* (32)
Qs
tr{(X, © (p(")p(")")) W,} = wi Quw,
Q4
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wherev’ andv” are two arbitrary Doppler shifts ift. The equations in (32) have been written using the
identity p(v)" (W, © X%) p(v) = tr{(X. ® (p(v)p(v)¥)) W, }. Note that Theorem 2 lays the ground
for considering two more Doppler frequencies (i£andv”) other tharnv,. This leads to a receive filter
w, with a behavior more similar to that dV, with respect to target Doppler shift. Consequently,
w, is obtained viaw, = D1(W,, Q1,Q2, Q3, Q4) or w, = Dy(W,,Q1,Q2,Q3,Q4) for cases where
rank(W,) > 3 orrank(W,) = 2, respectively. Note that the conditi¢tr (YQ1),tr (YQ2),tr (YQ3),
tr (YQy)) # (0,0,0,0) on the matrice€);, Q2, Qs3, andQy in Theorem 2 is satisfied; more precisely,
there existqay,as,as,a4) € Ri such thata1 Q1 + a2Qs + a3Qs + a1 Q4 = 0 (see [37]).

The x, can be obtained in a similar way; particularly, = D(X,,Ri,R2,Xo,I) (( =1 or 2

depending on the rank &X,) where
Ri = ©,(W,)+ (8/e)l (33)

Ry = W,0 ((p(V*)p(V*)H)* . (34)

B. New algorithms for synthesis stage

As explained earlier, the rank-one decomposition methaddmal with at most four trace equalities
for the synthesis of the receive filter and the transmit seqeieThis ability allows for considering the
values of theSﬁ]\V/R,«em(u) at three Doppler shiftg for the receive filter synthesis (and one Doppler
shift for synthesis of the transmit sequence). However pie (w,, x,) obtained by applying Theorem
2 can lead toSTN R(v) whose behavior with respect to target Doppler shift is nafffsiently” close to
the behavior of theS‘/IJ\\ﬁ%Telaw(u). It means that thes/ N R(r) can have significantly lower minimum
value with respect ta.. In this subsection, we devise novel algorithms to syn#eesiigh qualityw,
and x, from the solutions to the probler;, i.e. W, and X,. The idea is to consider the values
of p(v) (W, ® X*)p(v) as the optimal energy spectral density (ESD) associateld thi transmit
sequence and the receive filter. The sought receive fiteland transmit sequence, are obtained to
approximate well the behavior of the optimal ESD with resgec . Due to the fact thaS/I\J\ﬁ%mlax(u)

(of (W,,X,)) is a scaled version of the optimal ESD (see (9)), we deal #ithdenominator of the

SIN R,c14:(v) by imposing constraints in the synthesis problems.
Let {v1,vn, -, vk} denote a discrete set of target Doppler shifts “uniformistritbuted” over(2, and

consider the following quantities:
2P (WeoX))pr €Ry, 1<k <K (35)
wherep;, = p(vi). We define the vectog = [g1, g2, - -, gx|* as the optimal ESD.
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e Receive filter synthesidderein the aim is to synthesize the optimized receive filtar diven

(W,,X,). Observe that

pkH (WwH ® Xi) pr =wh (pkpkH ® X*) w. (36)
N——
T
Note also thafl', > 0 for all £ and so that there must exi8t;, (of rank d;) such thatT; = VkaH.

Moreover, consideringv’ V,VHw ~ g;, we can write
Vilw ~ /grug, 1 <k <K, (37)

where allu, € C% are unit-norm. Therefore, the receive filter, can be found as the minimizer of the
following metric:

|Aw — u ® b|? (38)

whereAf = [V, Vy,--- V], u=[uf,ul, - ,ul]”, andb = [\/g117, /5217, - -, /g 17]". Note
that the optimalS/I\J\ﬁ%relax(u) (corresponding tdW,, X, )) is a scaled version of the optimal ESD for
given (W,, X,) (see (9)). As a result, to obtain the receive filter that yaedd N R(v) values close to

SIN R,c14:(v), we should also take into account the denominator ofﬁﬁ\/m,«em(y), viz.

Consequently, we consider the following optimization peoiv to obtainw,:

min |[Aw —u® b|?
w,u
P ¢ subjectto wHGw < ~ (40)

lu?=1,1<k<K

with G = ¥, (X,) + M. In the sequel, we propose a cyclic minimization to tackle tton-convex

problemP:sY™.
For fixedw, the problerrﬂ?i,y"t boils down to the non-convex problem:
2

a; Vo
ap Vg2u2

min . — .

u (41)

ag VIKUK

subjectto ||u|?=1,1<k<K
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wherea;, contains the entries cAw corresponding tar;, for 1 < £ < K. The above minimization can

be decoupled intd{ minimization problems of the following form:

min aj — /gru|?
ni la. — v/gk )
subject to [Jug? = 1.
The solution to the above nearest-vector problem is simplgrgby
|
For fixedu, the problenP:¥" is equivalent to the following QCQP:
min wH AR Aw — 2R{(u ® b)? Aw}
w (44)

subject to w’Gw < ~.
Note that the positive definiteness of the matridd$ A andG ensures the convexity of the above QCQP.

As a result, this QCQP can be solved efficiently via interiomp methods or Lagrange multipliers [38].

e Transmit sequence synthesfstechnique similar to the above one can be used for transgitence

synthesis. More precisely, we have
pkH ((XXH)* ® W*) pr = x1 ((pkpkH)* ® W*) X. (45)
T
Therefore, minimization of the following metric can be ewmy#d for transmit sequence synthesis:

|Ax — 1 ® b|? (46)

whereT), = V,VI AH — [V, V,,-.. Vg] andui,b are defined similarly to the case of receive
filter design {1, € Cd with d being the rank oka). Note that for transmit sequence synthesis, the
similarity and energy constraints should be taken into antdn addition to the denominator of the
S/I\Z\ﬁ%relax(u). Consequently, we consider the following optimizationkgemn to synthesize the sought

transmit sequence:
min |Ax — @ ©b|?

x,u

subject to x7@.(W,)x < ¢

P Ix|? < e (47
R{xlxo} > ¢

[a?=1,1<k<K

where( = tr{X,0.(W,)} ande = e — 0/2. Let x denote the optimal solutior to the above problem.

Note thatx, = \/e-=: is such thatl|x,||? = e, and R{xx,} > . Therefore, one can considef as
[} *
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the optimized transmit sequengg which lies in the desired similarity region and is feasibbe the

problem?P.
The non-convex optimization problef:¥"" can be dealt with via a cyclic minimization similar to
that used forP;™. For fixedx, the solution to the:*” resulting nearest-vector problem is given by
= HZ—ZH (48)
wherea,, includes the entries oA x corresponding tay, for 1 < k£ < K. On the other hand, the case

of fixed u is handled by solving the following convex QCQP:

min xH <AHA> x—2R{(uo b)HAX}

subject to x70©.(W,)x < ¢ (49)
x[]* < e
R{xxo} > e.

Remark 4 Note that thex, synthesized via the rank-one decomposition is a feasibiet ffor the
above convex QCQP. Indeed, the output of the rank-one deasitigqn procedure in Section IV-A can
be used as a feasible starting point for the proposed cydhanization to obtain the transmit sequence.
This can also be done for the receive filter synthesis. |

The steps of DESIDE can be summarized as in Table Il. The fiept ®nsists of applying DESIDE-R
to the relaxed probler; (see Table I). Steps 2 and 3 aim to synthesize high qualigivedilters and
transmit sequences, respectively. The cyclic minimizetion step 2 is terminated when a pre-defined
stop criterion is satisfied; e.gw( ) — w(®)| < ¢ for a given¢ > 0 wherei denotes the iteration
number. A similar criterion can be used to terminate theritlgm in the step 3. Note that the obtained
x after satisfying the stop criterion in the step 3 is scaledlitain x, with energye. The complexity
of DESIDE can be addressed considering DESIDE-R and thénsgist stage. The complexity of each
iteration of DESIDE-R isO(N?3-%) (see the discussion above Table I). The complexity of eaghtibn
of the proposed synthesis stage is determined by the coityptExsolving the QCQPs in eqgs. (44) and
(49). These QCQPs can be solved via described methods in80J0(N?3) complexity.

V. NUMERICAL EXAMPLES

In this section we provide several numerical examples tongxathe effectiveness of DESIDE method.

Throughout the simulations, unless otherwise explicitigtesd, we consider a code lenftiv = 20,

It is expected that the output SINR of the receive filter inses by increasingV due to the increase in the number of

degrees of freedom for the design problem (see e.g. [39])tleedonger coherent processing interval [40].
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TABLE I

THE DESIDE METHOD FOR OBTAININGDOPPLER ROBUST PAIR OF TRANSMIT SEQUENCE AND RECEIVE FILTER

Step 1 (Solving the relaxed problem): Apply DESIDE-R method to the
optimization probleniP; to obtain the pair of W,, X.).

Step 2 (Receive filter synthesis): IW, is rank-one, perform an eigen-

decompositionW, = w,wl to obtainw,. Otherwise, initializew with

a random vector i and do the following operations until a pre-defined

stop criterion is satisfied:

o Obtainu by solving the optimization problem in (41) using (43).
« Solve the convex QCQP in (44) to obtain.

Step 3(Transmit sequence synthesis)Xf, is rank-one, perform an eigen-
decompositionX, = xx” to obtainx, = xel *®"x0) Otherwise,
initialize x with a random vector irC" and do the following operations

until a pre-defined stop criterion is satisfied:

o Obtainu by solving the optimization problem in (47) for fixed
using (48).
« Solve the convex QCQP in (49) to obtain

number of interfering range ringd. = 2, and number azimuth sectors = 100. The interfering
signals backscattered from various azimuth sectors arghtesi according to the azimuth beam-pattern
characteristic of a typical linear array (see [12] for dedaiA uniformly distributed clutter is assumed
with O'(Qkﬂ.
uniformly distributed over the intervad, = [7; — §, 74 + §] = [-0.1,0.1] [40]. As to the target, we set

) = o? =100 for all (k,4). In addition, we let the Doppler shifts of the clutter scadts be

ar = 1. Concerning the covariance matiM of the signal-independent interference, it is assumed that
M, = plm—nl with parameter. Regarding the similarity constraint, the generalizedkBaicode is
used for sequence, [41]. This is a constant modulus sequence which has goo@lation properties
[12]. The size of the similarity region is controlled By = J/e. The total transmit energy is supposed

to be equal to the sequence length The convex optimization problems are solved via the CVXkor

[42].
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A. The effect of the design parameters

e The width ofQ2 and the correlations between the interference samples

The performance of the system generally depends on the widfrget Doppler shift interval2 and
the correlations between the interference samples (dtadrby the parametes). Herein the non-robust
design (i.e., with a priori known target Doppler shiff of the transmit sequence and receive filter (with

a similarity constraint) [12], i.e. the solution to the foNing problem:

max SINR(D)

X, W

subject to [x|2 = e (50)
I —x0[|* < 6

is considered as a benchmark for comparisons. The effedtseafvidth of interval2 and the value of
p are investigated in Fig. 1, where the valuesSdfN R(v) obtained by DESIDE (with: = 10~3 and
dp = 0.5) are compared with those of the non-robust design for twervais2 = [1, 3], 2 = [1.5,2.5]
and forp € {0,0.2,0.5}. For the non-robust design, we reasonablyrsetjual to“t2 with Q = (1, v,,].
In all examples, it is observed that DESIDE provides a rol$usV R(v) over the considered interval
Q) of target Doppler shifts. The minimum value 8f N R(v) obtained by DESIDE outperforms that of
the non-robust design significantly. The superiority of MBS is highlighted by observing that for a
considerable range of the target Doppler shifthe SIN R(v) obtained by DESIDE is arountd dB
larger than that of the non-robust design. Furthermoreafigrfixedp, the minimum value o6/ N R(v) in
the intervalQ2 = [1, 3] is less than that fof2 = [1.5,2.5]. As expected, the wider range of target Doppler
shift leads to a more restricted design. Another obsemdtidhat for a fixed intervaf2, the minimum
values of SINR(v) increase ag increases. The observation is compatible with the behavidhe
upper bound on theiin, o S/I\Z\ﬁ%mlax(u) in (29)- by increasing the value @f the value of\,,;,(M)
decreases and the upper bound on S@/Rmm(u) becomes larger. Note that in these examples, the
ranks of the optimaW, and X, were equal to one (see section V-D) and hence the obtaines ghi
the transmit sequence and the receive filterg®mal for the problemp.

e Size of the similarity region

Examples for the robust design of transmit sequences araiveefilters with various sizes of sim-
ilarity region are now provided. The values Sff NR(v) obtained by DESIDE for different, in
{0.01,0.2,0.4,0.8} are depicted in Fig. 2. The robustness property with resgmette target Doppler
shift v is observed in all examples. As expected, the largerdthehe larger the worst value of the

SINR(v). This is due to a larger feasibility set for the optimizatiproblemSDP x and the fact that
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the optimalW, andX, are rank-one.

B. Convergence of DESIDE-R

Examples of the convergence of DESIDE-R are depicted in Fidglhis figure shows the values of
the objective function (in the maximization problef;) obtained through the iterations € N (with
x denoting the iteration number) fgy = 0.2, §o = 0.5, as well as two interval$ = [1,3] and

Q = [1.5,2.5]. As expected, the cyclic maximization approach which isigkV to tackleP; leads to a

monotonically increasing objective functioin,cq SIN R,.q.(v). The values of the objective function
for Q = [1.5,2.5] are larger than those fa2 = [1, 3] (see the discussions associated with Fig. 1). Note
that bothW, andX, are rank-one here, and as a result, the obtained pairs ofathentit sequence and

receive filter areoptimal for the original design probler.

C. A fast-time coding example

As mentioned earlier (see Remark 1), the problem formuiatiod the design method can also be
applied to fast-time coding systems. We present an exanfigiéch an application by considering = 32
and N, = N. The target Doppler shift is assumed to be in the inten@l= [—0.1,0.1]. The considered
maximum target Doppler shift corresponds to a target witaggroximate velocity of Mach illuminating
by an L-band radar of sampling frequentyMHz. Owing to the fact that normalized Doppler shift in
this case is proportional to the system bandwidth, we nedgfeceffect of the Doppler shifts of clutter
scatterers. Fig. 4 shows the obtain€dN R(v) by DESIDE as well as the results for the non-robust
design, foro? = 10, o = 1, andp = 0. It is observed that employing DESIDE leads to performance
robustness of the system. In this example, the result aidaty DESIDE outperforms that of the non-
robust design fofr| > 0.035. Moreover, the obtained, and X, were rank-one too, similar to the

examples presented earlier.

D. The synthesis algorithms

The performance analysis of the synthesis algorithms ifopeed by considering cases where the
ranks of the solutions to the relaxed problém are larger than one. We consid2tr random starting
points for the synthesis algorithms (with= 10~3) and report the best result. In the first example, we
assume = [1,2], Q. = [-0.25,0.25], 02 = 100, dp = 0.1. For a random initialization, DESIDE-R
provides(W,, X, ) with rank(W,) = 2 andrank(X,) = 1 (it was numerically observed that as long

asQ N Q. = @, the rank of W, is equal to one for most of the employed random initial pginthe
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optimal ESD corresponding to the pdiW,, X,) is shown in Fig. 5(a). The values &fINR(v) for
the synthesizeav, andx, are shown in Fig. 5(b). This figure also includes the optimrelax(u)
(corresponding tqW,, X,)) and the result of applying the rank-one decomposition otethror the
latter method, the best result is obtained with= 1.71, v/ = 1.3, andv” = 1.5. It is observed that using
the proposed synthesis algorithm leads to valueSIaf R(v) that are close to the optimal ones. Fig. 5(c)
shows the optimaB/IJ\\ﬁ%relam(y), SINR(v) for (w,,x,) synthesized via the proposed algorithm and
the result of rank-one decomposition method for anothee @asvhich(2 = [1, 3]. The performance of

the rank-one decomposition method is degraded considevdi#reas the difference between the results

of the proposed algorithm an§l/ N R,.;...(~) is minor. This can be explained by noting that the rank-
one decomposition method can consider the values of thmapﬁﬁJ\V/R,«em(y) at up to three points,
i.e., v, v/, andv”. On the other hand, the proposed method considers a camstraynthesis problem

to approximate the values of optimﬁflﬁ\f/Rrelam(y) for an arbitrary set of discrete. To measure the

goodness of the synthesis algorithms, we define the folipwass metric:
min,eq SINR(v) ) (51)

LA 10log ( S

mingeq SIN Rrelar (V)
In this example, the loss metri€ for the proposed method and the rank-one decompositionadette
equal to—0.25 dB and—4.1 dB, respectively. Next we study the effect of the number dfrogl ESD
samples, i.eK, on the performance of the proposed synthesis stage. Thisrés a transmit sequence
synthesis example are illustrated in Fig. 5(d). For thiswgie, we have) = [0, 2], Q2. = [—0.125,0.125],
and dy = 0.3. Note that it was numerically observed that the rankXaf is equal to one as long as
QN Q. = @. The figure shows the absolute values of loss mefriwersus K. It is seen that the
performance improvement fak > 50 is negligible. Another observation is that there is abedtdB
loss even for sufficiently large values @f. This might be due to imposing more constraints in the
seguence synthesis as compared to the case of filter sysitheshe example of Fig. 5(d), the loss of

the rank-decomposition method is around3 dB; here the latter method can take into account just one

point of the optimalSIN R, .. (v), 1.€., vy.

VI. CONCLUDING REMARKS

A joint robust design of the transmit sequence and receitar filas considered for cases where the
Doppler shift of the target is unknown. A novel method (c&llBESIDE) was proposed to tackle the

design problem under the similarity constraint. The masuls can be summarized as follows:
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« The robust design problem was cast as a max-min problem lng ube model which considers
the effects of the interfering clutter scatterers at vagioange-azimuth bins and internal Doppler
shifts of these scatterers. It was shown that for a givemmagtiransmit sequence, the problem can
equivalently be written as a QCQP with infinitely many nomaex constraints and hence the design
problem in general belongs to a class of NP-hard problems.

« DESIDE was devised to tackle the design problem. The metbadists of solving a relaxed version

of the design problem (via DESIDE-R) as well as a synthesigest

— DESIDE-R was based on a reformulation 8f NR(v) by consideringW = ww! and
X = xx!, relaxation of the rank-one constraints on the aforemaatiomatrices, and cyclic
maximization of the relaxed problem. For fixed receive fjltae relaxed optimization problem
was equivalently expressed as an SDP by using a transfam@tispired by Charnes-Cooper
transform) and an SDP representation of the infinitely mdfigeaconstraints. Using a similar
technigue, an SDP was obtained in the fixed transmit sequezasme

— New algorithms were devised to synthesize the receivedil@d transmit sequences from the
solutions to the relaxed problem. The synthesis algorithmsto fit thesﬁj\f/R,«em(u) values
associated with the solutions provided by DESIDE-R. Thelssis stage is cast as constrained

non-convex problems which were dealt with via cyclic mirgation.

« The effectiveness of the devised methods was illustratedrbyiding several numerical examples.
It was shown that the DESIDE system performance possessessalerable robustness with respect
to the target Doppler shift. The numerical analysis of theppsed synthesis algorithms confirms
that high quality pairs of receive filter and transmit sequeeoan be synthesized from the solutions
to the relaxed problem.
The design problem considered in this paper is based on kmpawameters of clutter and signal-
independent interference. Robust design of transmit sespseand receive filters with respect to uncer-
tainties in clutter and interference parameters in additm the target Doppler shift is a possible topic

for future research.
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APPENDIX A

PROOF OFLEMMA 1

Note that the numerator TN R(v) in (2) can be rewritten as
lar?|w (x©p)) |° = lorPPw (x @ p(v))(x © p(v))w (52)
= |ar(x©p@)Tww! (x © p(v))
= lar/’p(w)" (WWH © (XXH)*) p(v)

where in the last equality we have used standard properfiéiseoHadamard product [31]. As to the

denominator ofSINR(v) in (2), it is straightforward to verify that, for allk, ),
I'(x,(k,i)) = Diag(x )<I>€(:’“)”Diag(x)H (53)
= xfo® d(""”.

€k, i)

Using the matrix variabl& = xx and substituting the above identity in (3) we obtain that

N.—1 L-1
2 X) 2B (x)= Y Y ok,d (X o <I>q;*;>) Jr. (54)
k=0 =0

As a result, eq. (52) and (54) yield the expressiorbdiV R(v) in (9).
To derive the alternative expression 8f N R(v) in (10), we begin by considering the result of the

Lemma 3.1 in [12] which implies

N. L-1
wi X, (x)w Z ZO’ i) X TDiag(J_}, )@6(;‘)” Diag(J_pw)x*. (55)
k=0 k=0
Note also that
Diag(J_yw*)®. %" Diag(J_yw) = (J_yw*wTI7,) © L") V. (56)

Therefore, using (56) as well as the fact that the covarianagix X. (x) = 0, we can write

wis, (x)w=x70, (W)x (57)
whereW = ww! and
N.—1 L-1 o "
e.wW)=Y Yo, ((J;;FWJk) © <<I>€(;i’;"> ) . (58)
k=0 =0

Now let 5 = w Mw, and observe that

wiS, (x)w + wiMw = tr { <@c(W) + <§> I) X} . (59)

The above identity and eq. (52) prove the validity of theraliive expression of /N R(v) in (10). R
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Fig. 1. Design examples for various target Doppler shiivls2 and variousp: (a) 2 = [1, 3] andp = 0.5, (b) Q2 = [1.5, 2.5]
andp = 0.5, () Q2 =[1,3] andp = 0.2, (d) 2 = [1.5,2.5] andp = 0.2, () Q = [1,3] andp = 0, (f) @ = [1.5,2.5] and

p=0.
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