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Abstract

In this paper, we study the joint design of Doppler robust transmit sequence and receive filter to

improve the performance of an active sensing system dealingwith signal-dependent interference. The

signal-to-noise-plus-interference (SINR) of the filter output is considered as the performance measure of

the system. The design problem is cast as a max-min optimization problem to robustify the system SINR

with respect to the unknown Doppler shifts of the targets. Totackle the design problem, which belongs to

a class of NP-hard problems, we devise a novel method (which we call DESIDE) to obtain optimized pairs

of transmit sequence and receive filter sharing the desired robustness property. The proposed method is

based on a cyclic maximization of SINR expressions with relaxed rank-one constraints, and is followed by

a novel synthesis stage. We devise synthesis algorithms to obtain high quality pairs of transmit sequence

and receive filter that well approximate the behavior of the optimal SINR (of the relaxed problem) with

respect to target Doppler shift. Several numerical examples are provided to analyze the performance

obtained by DESIDE.
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I. INTRODUCTION

The performance of an active sensing system can be significantly improved by judiciously designing

its transmit sequence and receive filter. Such a design usually deals with several challenges including

the fact that Doppler shifts of moving targets are often unknown at the transmit side, the existence of

signal-dependent interference as well as signal-independent interference at the receive side, and practical

constraints such as similarity to a given code.

Joint design of the transmit sequence and the receive filter has been considered in a large number of

studies during the last decades. Most of the works have been concerned with either stationary targets or

targets with known Doppler shifts (see e.g. [1]–[8]). In [9], considering a stationary target, a frequency

domain approach has been employed to obtain an optimal receive filter and corresponding optimal energy

spectral density of the transmit signal; then a synthesis procedure has been used to approximately provide

the time domain signal. The works of [10] and [11] consider a related problem to that of [9] under a

peak-to-average power ratio (PAR) constraint. The reference [12] deals with joint design of transmit

sequence and receive filter under a similarity constraint incases where the Doppler shift of the target is

known. In [13], constant-modulus transmit sequences are considered in a framework similar to that of

[12]. Several researches consider signal-independent clutter scenarios (see e.g. [14]–[18]). The unknown

Doppler shift of the target has been taken into account in [16] and [18]. The reference [16] considers

Doppler robust code design problem for signal-independentclutter cases under a similarity constraint.

The ideas of [16] are generalized in [18] where the PAR constraint is also imposed.

In this paper, we devise a novel method forDoppler robust joint design of transmit sequence and

receive filter (which we call DESIDE) in the presence of clutter. We focus on radar systems but the

design methodology can be useful for other active sensing systems such as sonar, seismic exploration,

etc. We consider the SINR at the output of the receive filter asthe performance measure. Besides an energy

constraint, a similarity constraint is imposed on the transmit sequence to control certain characteristics

of the transmit waveform. The design problem is cast as a max-min optimization and shown to belong to

a class of NP-hard problems. We devise a cyclic maximizationto tackle a relaxed version of the design

problem. Furthermore, we propose a synthesis stage to obtain optimized pairs of transmit sequences and

receive filters which possess the desired Doppler robustness.

The rest of this paper is organized as follows. The data modeling and problem formulation are presented
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in Section II. Section III contains the steps for the derivation of the cyclic approach to tackle the relaxed

problem. The required synthesis stage is discussed in Section IV. Numerical results are provided in

Section V. Finally, conclusions are drawn in Section VI.

Notation:We use bold lowercase letters for vectors and bold uppercaseletters for matrices.(·)T , (·)∗ and

(·)H denote the vector/matrix transpose, the complex conjugate, and the Hermitian transpose, respectively.

I represents the identity matrix inCN×N . 1 and0 are the all-one and the all-zero vectors/matrices.ek is

thekth standard basis vector inCN . The l2-norm of a vectorx is denoted by‖x‖. The symbol⊙ stands

for the Hadamard (element-wise) product of matrices. tr(·) is the trace of a square matrix argument. The

notationsλmax(·) andλmin(·) indicate the principal and the minor eigenvalues of a Hermitian matrix,

respectively.Diag(·) denotes the diagonal matrix formed by the entries of the vector argument, whereas

diag(·) denotes the vector formed by collecting the diagonal entries of the matrix argument. We write

A � B iff A −B is positive semi-definite, andA ≻ B iff A−B is positive-definite.ℜ(·) andarg(·)
denote the real-part and the phase angle (in radians) of the complex-valued argument. Finally,N, R and

C represent the set of natural, real and complex numbers, respectively.

II. PROBLEM FORMULATION

We consider a radar system with (slow-time) transmit sequencex ∈ CN and receive filterw ∈ CN .

The discrete-time received signal backscattered from a moving target corresponding to the range-azimuth

cell under the test can be modeled as (see, e.g. [12], [13], and [15]):

r = αTx⊙ p(ν) + c+ n, (1)

whereαT is a complex parameter associated with backscattering effects of the target as well as propagation

effects,p(ν) = [1, ejν , . . . , ej(N−1)ν ]T with ν being the normalized target Doppler shift (expressed in

radians),c is theN -dimensional column vector containing clutter (signal-dependent interference) samples,

andn is theN -dimensional column vector of (signal-independent) interference samples. The vectorc is

the superposition of the returns from different uncorrelated scatterers located at various range-azimuth

bins and can be expressed as [12]

c =

Nc−1∑

k=0

L−1∑

i=0

α(k,i)Jk

(
s⊙ p(νd(k,i)

)
)
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whereNc ≤ N is the number of range rings1 that interfere with the range-azimuth bin of interest(0, 0),

L is the number of discrete azimuth sectors,α(k,i) andνd(k,i)
denote the echo and the normalized Doppler

shift, respectively, of the scatterer in the range-azimuthbin (k, i), andJk denotes the aperiodic shifting

matrix for 0 ≤ k ≤ Nc − 1, viz.

Jk(l,m) =





1 if l −m = k

0 if l −m 6= k
(l,m) ∈ {1, . . . , N}2

with J−k = JT
k .

The SINR at the output of the receive filter can be formulated as

SINR(ν) =
|αT |2

∣∣wH (x⊙ p(ν))
∣∣2

wHΣc (x)w +wHMw
(2)

whereM , E{nnH} andΣc (x) is the covariance matrix ofc given by [12]

Σc (x) =

Nc−1∑

k=0

L−1∑

i=0

σ2
(k,i)JkΓ(x, (k, i))J

T
k (3)

with σ2
(k,i) = E

[
|α(k,i)|2

]
being the mean interfering power associated with the clutter patch located

at the (k, i)th range-azimuth bin whose Doppler shift is supposed to be uniformly distributed in the

intervalΩc =
(
ν̄d(k,i)

− ǫ(k,i)

2 , ν̄d(k,i)
+

ǫ(k,i)

2

)
[15]. HereinΓ(x, (k, i)) = Diag(x)Φ

ν̄d(k,i)

ǫ(k,i) Diag(x)H where

Φ
ν̄d(k,i)

ǫ(k,i) (l,m) is the covariance matrix ofp(νd(k,i)
) [12], viz.

Φ
ν̄d(k,i)

ǫ(k,i) (l,m) =





1 if l = m

e

(
j(l−m)ν̄d(k,i)

)
sin[0.5(l−m)ǫ(k,i)]
[0.5(l−m)ǫ(k,i)]

if l 6= m
(l,m) ∈ {1, . . . , N}2. (4)

Note that the expression forΦ
ν̄d(k,i)

ǫ(k,i) (l,m) can be modified to consider cases with an arbitrary statistical

distribution of the Doppler shifts of the clutter scatterers.

In this study we assume that the parameters of clutter and signal-independent interference are known

at the transmit side by using cognitive (knowledge-aided) methods [12] [19]. We consider the SINR in

(2) as the performance measure of the system [12] [15] and aimto find a robust design of the transmit

sequence and the receive filter with respect to the unknown Doppler shift of the target2. In addition to

1Note that the model considers the general case of range ambiguous clutter and reduces to unambiguous range scenario for

Nc = 1. See [12] and [15] for justifications of the employed model and several examples of scenes that can be modeled in this

way.

2The target Doppler shift can be estimated at the receiver, e.g. via a bank of filters matched to different Doppler frequencies

[20]; however, the Doppler shifts of the targets are usuallyunknown at the transmit side and hence we consider a robust design

with respect to the target Doppler shift. The design approach can also be useful for a robust confirmation process, so as to

account for target Doppler estimation errors.
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an energy constraint, a similarity constraint is imposed onthe transmit sequence [21] [12] [22]:

‖x− x0‖2 ≤ δ , (5)

where the parameterδ ≥ 0 rules the size of the similarity region andx0 is a given sequence. There

are several reasons that justify the use of a similarity constraint in the design of a radar sequence. The

unconstrained optimization of SINR can lead to signals withsignificant modulus variations, poor range

resolution, high peak sidelobe levels, and more generally with an undesired ambiguity function behavior.

These drawbacks can be partially circumvented imposing thesimilarity constraint (5) on the sought

radar code [12] [21] [22]. Comprehensive simulations have been performed in [12] [16] [21] and [23]

to illustrate how the properties of the ambiguity function (e.g. range resolution, sidelobe levels, etc.)

and modulus variations associated with the optimized code can be controlled via the value ofδ in the

similarity constraint. By doing so, it is required that the solution be similar to a known sequencex0 which

has some good properties such as constant modulus, reasonable range resolution, and peak sidelobe level.

The problem of Doppler robust joint design of transmit sequencex and receive filterw under the

similarity constraint can be cast as the following max-min optimization problem

P





max
x,w

min
ν

∣∣wH (x⊙ p(ν))
∣∣2

wHΣc (x)w +wHMw

subject to ‖x‖2 = e

‖x− x0‖2 ≤ δ

ν ∈ Ω

(6)

whereΩ = [νl, νu] ⊆ [−π, π] denotes a given interval of the target Doppler shiftν and e denotes the

maximum available transmit energy. Note that for a priori known target Doppler shift̃ν (i.e. Ω = [ν̃, ν̃]),

the problemP boils down to the considered problem in [12].

Remark 1:Note that a similar discrete-time data modeling and problemformulation applies to fast-

time coding systems. In that case, the entries ofx denote (complex) weights of the sub-pulses within a

transmit pulse. Moreover, the normalized target Doppler shift ν is proportional to the system bandwidth

(as opposed to the slow-time scheme for whichν is proportional to the pulse repetition frequency of the

system); hence in such a case, the Doppler robust design would be concerned with high speed moving

targets. As to the expressions, the formulation of the covariance matrixΣc (x) in (3) should be modified.

More precisely, for fast-time coding scenarios, the summation over k in (3) should be performed for

0 < |k| ≤ N − 1. We refer interested readers to the references [10] and [20]for more details on this

aspect. �
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To realize the hardness of the above problem, letz′ andx̄⋆ denote a slack variable and an optimal so-

lution x to the problemP, respectively. The optimalw is obtained via solving the following optimization

problem: 




max
w,z′

z′

wHΣc (x̄⋆)w +wHMw

subject to wH
(
x̄⋆x̄

H
⋆ ⊙ p(ν)p(ν)H

)
w ≥ z′

∀ν ∈ Ω.

(7)

The above quadratic fractional program can be recast equivalently as (see Lemma 2 below and [24]):

PNP





max
w,z′

z′

subject to wH (Σc (x̄⋆) +M)w ≤ 1

wH
(
x̄⋆x̄

H
⋆ ⊙ p(ν)p(ν)H

)
w ≥ z′

∀ν ∈ Ω.

(8)

The optimization problemPNP is a quadratically constrained quadratic program (QCQP) with infinitely

many non-convex constraints. This class of QCQPs is known tobe NP-hard in general [16] [25, Chapter

4] [26]. Note that solving the optimization problemP with respect to(w,x, ν) is at least as hard as

solving the problemPNP .

The following lemma helps tackling the optimization problem P via providing two alternative expres-

sions for the objective function in problemP.

Lemma 1. Let X = xxH andW = wwH . TheSINR(ν) can be alternatively expressed with respect

to X andW as follows:

SINR(ν) =
|αT |2p(ν)H (W ⊙X∗)p(ν)

tr {(Σc (X) +M)W} (9)

=
|αT |2p(ν)H (W ⊙X∗)p(ν)

tr
{(

Θc(W) + (β
e
)I
)
X
} (10)

whereβ = tr{MW}, and

Σc (X) =

Nc−1∑

k=0

L−1∑

i=0

σ2
(k,i)Jk

(
X⊙Φ

ν̄d(k,i)

ǫ(k,i)

)
JT
k , (11)

Θc (W) =

Nc−1∑

k=0

L−1∑

i=0

σ2
(k,i)

((
JT
kWJk

)
⊙
(
Φ

ν̄d(k,i)

ǫ(k,i)

)∗)
. (12)

Proof: See Appendix A.
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To deal with the design problemP, consider the following optimization problem:

P ′






max
X,W

min
ν

p(ν)H (W ⊙X∗)p(ν)

tr {(Σc (X) +M)W}
subject to tr{X} = e

tr{XX0} ≥ ǫδ

rank(X) = 1

rank(W) = 1

X � 0

W � 0

ν ∈ Ω

(13)

whereX0 = x0x
H
0 andǫδ = ((2e−δ)/2)2 . Let (W,X) denote an optimal solution to the above problem.

Using Lemma 1 and the results of [21], it can be easily verifiedthat an optimal solution toP is given

by (w,x ej arg (x
Hx0)) with W = wwH andX = xxH .

Now observe that both the objective function and the rank constraints inP ′ are non-convex. In addition,

p(ν) belongs to a non-convex set forν ∈ Ω. In the sequel, we relax the rank-one constraints onX and

W in P ′ to obtain the relaxed problemP1:

P1






max
X,W

min
ν

p(ν)H (W ⊙X∗)p(ν)

tr {(Σc (X) +M)W}
subject to tr{X} = e

tr{XX0} ≥ ǫδ

X � 0

W � 0

ν ∈ Ω.

(14)

The expression|αT |2p(ν)H(W⊙X∗)p(ν)
tr{(Σc(X)+M)W} for rank-oneX andW (i.e., X = xxH andW = wwH) is

equal toSINR(ν) (see Lemma 1). When the rank constraints are omitted (i.e., for arbitraryX � 0 and

W � 0), the expression|αT |2p(ν)H (W⊙X∗)p(ν)
tr{(Σc(X)+M)W} may be used in lieu ofSINR(ν) and it will be denoted

by S̃INRrelax(ν) in the following.SINR(ν) is the restriction ofS̃INRrelax(ν) over the space of the

rank-one positive semi-definite matricesX andW (due to the relaxation of the rank-one constraints on

X andW). The optimization problemP1 is still non-convex and will be discussed in the next section.

III. T HE PROPOSEDMETHOD TO TACKLE THE RELAXED PROBLEMP1

In this section, we devise a novel cyclic algorithm (which wecall DESIDE-R as it deals with the

relaxed version of the original problem) to tackle the non-convex optimization problemP1. In a cyclic
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algorithm, the optimization variables are partitioned into two parts; then, by starting from an initial point,

optimization is cyclically performed with respect to each part (while the another part is fixed) [27]. In

the following, we consider the maximization problemP1 with respect to(X,W) whereX andW are

the two partitions. The obtained pair(W⋆,X⋆) which maximizesS̃INRrelax(ν) will be used later to

synthesize the optimized transmit sequence/receive filterpair (x⋆,w⋆). The synthesis stage is addressed

in Section IV.

• OptimalX for fixedW:

Let t̃ ∈ R denote a slack variable. For fixedW, the optimization in (14) is equivalent to the following

maximization problem:

PX





max
X,t̃

t̃

tr
{(

Θc(W) + (β
e
)I
)
X
}

subject to p(ν)H (W ⊙X∗)p(ν) ≥ t̃, ∀ ν ∈ Ω

tr{X} = e

tr{XX0} ≥ ǫδ

X � 0.

(15)

Note that the above problem is feasible and has a finite-valued objective function over the constraint set

(see eq. (29)). Moreover, problemPX is a linear-fractional maximization problem with infinitely many

constraints (see the first constraint in (15)). Inspired by Charnes-Cooper transform for tackling linear

fractional programs [28], we letY = sX, t = s t̃ for an auxiliary variables ≥ 0, and consider the

following optimization problem:

P ′
X





max
Y,t,s

t

subject to tr
{(

Θc(W) + (β
e
)I
)
Y
}
= 1

p(ν)H (W⊙Y∗)p(ν) ≥ t, ∀ ν ∈ Ω

tr{Y} = e s

tr{YX0} ≥ ǫδ s

Y � 0

s ≥ 0.

(16)

Lemma 2. The optimization problemsPX andP ′
X are equivalent. More precisely, they share the same

optimal values and their corresponding solutions can be uniquely obtained from each other.

Proof: Let (X⋆, t̃⋆) and v(PX ) denote an optimal solution and the optimal value of the problem

PX , respectively. Note thattr
{(

Θc(W) + (β
e
)I
)
Y
}
> 0 becauseβ > 0. It is straightforward to verify
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that

(Y, t, s) =



 X⋆

tr
{(

Θc(W) + (β
e
)I
)
X⋆

} , t̃⋆

tr
{(

Θc(W) + (β
e
)I
)
X⋆

} , 1

tr
{(

Θc(W) + (β
e
)I
)
X⋆

}





(17)

is feasible for the problemP ′
X . Also observe that the value of the objective function ofP ′

X for (Y, t, s)

in (17) is given by
t⋆

tr
{(

Θc(W) + (β
e
)I
)
X⋆

} (18)

and note that (18) is equal tov(PX). Therefore, for the optimal value of the problemP ′
X , i.e. v(P ′

X),

we have

v(P ′
X) ≥ v(PX). (19)

Next let (Y⋆, t⋆, s⋆) denote an optimal solution to the problemP ′
X . Note thats⋆ 6= 0 becauses⋆ = 0

leads toY⋆ = 0 (a contradiction, see the first constraint inP ′
X). One can check that(Y⋆/s⋆, t⋆/s⋆)

is feasible for the problemPX with corresponding objective value equal tot⋆. Owing to the fact that

v(P ′
X) = t⋆, the following inequality holds betweenv(P ′

X) andv(PX):

v(P ′
X) ≤ v(PX). (20)

Finally, eqs. (19) and (20) yieldv(P ′
X) = v(PX) and the proof is concluded.

Now observe thatP ′
X is a convex problem with infinitely many constraints. To dealwith the constraint

set, we note that the constraintp(ν)H (W⊙Y∗)p(ν) ≥ t, ∀ ν ∈ Ω implies the non-negativity of a

trigonometric polynomial ofν over the intervalΩ. More specifically, let

zk ,

N−k∑

i=1

Zi+k,i, 0 ≤ k ≤ N − 1, (21)

andz = [z0, z1, . . . , zN−1]
T with Z = W ⊙Y∗. It is straightforward to verify that for anyν ∈ Ω, the

aforementioned constraint is equivalent to

h(ν) , z0 − t+ 2ℜ
(

N−1∑

k=1

zke
−jkν

)
≥ 0. (22)

Interestingly, a semidefinite representation of the constraint (22) can be obtained via Theorem 3.4 in [29]

which we quote below.

Theorem 1. The trigonometric polynomial̃h(ν) = z̃0 + 2ℜ
(∑N−1

k=1 z̃ke
−jkν

)
is non-negative for any

ν ∈ [ν0 − ν1, ν0 + ν1] (with 0 < ν1 < π) iff there exist anN × N Hermitian matrixZ1 � 0 and an
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(N − 1)× (N − 1) Hermitian matrixZ2 � 0 such that

z̃ = FH
1

(
diag(F1Z1F

H
1 ) + q⊙ diag(F2Z2F

H
2 )
)

(23)

where z̃ = [z̃0, z̃1, . . . , z̃N−1]
T , q = [q0, q1, . . . , qn−1]

T with qk = cos(2πk/n − ν0) − cos(ν1), F1 =

[f0, . . . , fN−1] and F2 = [f0, . . . , fN−2] in which fk = [1, e−jkθ, . . . , e−j(n−1)kθ]T with θ = 2π/n, and

n ≥ 2N − 1.

Note that an SDP representation of (22) is immediate by employing the above results with̃z = z,

n = 2N − 1, ν0 = (νl + νu)/2, andν1 = ν0 − νl. Consequently,P ′
X is equivalent to the following SDP:

SDPX





max
Y,Z1,Z2,t,s

t

subject to tr
{(

Θc(W) + (β
e
)I
)
Y
}
= 1

z = te1 + FH
1

(
diag(F1Z1F

H
1 ) + q⊙ diag(F2Z2F

H
2 )
)

tr{Y} = e s

tr{YX0} ≥ ǫδ s

Y � 0

Z1 � 0

Z2 � 0

s ≥ 0.

(24)

Remark 2: The derivation ofSDPX can be extended to deal with cases whereΩ is a union of

several (non-overlapping) sub-intervals of[−π, π]. More precisely, for each of such sub-intervals, the

SDP representation associated with the corresponding constraint (obtained via Theorem 1) can be added

to the constraint set ofSDPX . �

Let (Y,Z1,Z2, t, s) denote an optimal solution toSDPX . The corresponding optimalX (i.e., an

optimal solution toPX ) for fixed W is given byY/s (see Lemma 2).

• OptimalW for fixedX:

Using Lemma 1,P1 can be recast into the following equivalent form for fixedX:

PW






max
W,t̆

t̆

tr {(Σc (X) +M)W}
subject to p(ν)H (W⊙X∗)p(ν) ≥ t̆, ∀ ν ∈ Ω

W � 0

(25)

where t̆ denotes a slack variable. The above problem can be tackled ina way similar to the case of

obtainingX for fixed W. In particular, using Lemma 2 as well as Theorem 1, we obtain the following

October 24, 2013 DRAFT



11

SDP:

SDPW






max
W,Z′

1,Z
′

2,t̆
t̆

subject to tr {(Σc (X) +M)W} = 1

z′ = t̆e1 + FH
1

(
diag(F1Z

′
1F

H
1 ) + q⊙ diag(F2Z

′
2F

H
2 )
)

W � 0

Z′
1 � 0

Z′
2 � 0

(26)

wherez′ is given by

z′k =

N−k∑

i=1

Z ′
i+k,i, 0 ≤ k ≤ N − 1, (27)

with Z′ = W⊙X∗.

Remark 3: It might be interesting in practice to control the shape of the cross-ambiguity function of the

transmit sequencex and the receive filterw. An approach would then be to require that the variablesw

andx are sufficiently similar to givenw0 andx0, respectively, which possess desirable cross-ambiguity

properties. The Doppler robust design for controlling the shape of the cross-ambiguity function could

therefore be cast as the following optimization problem:

Pcross





max
x,w

min
ν

∣∣wH (x⊙ p(ν))
∣∣2

wHΣc (x)w +wHMw

subject to ‖x− x0‖2 ≤ δ

‖w −w0‖2 ≤ δw

‖x‖2 = e

ν ∈ Ω

(28)

whereδw rules the size of the similarity region for the receive filter. The problemPcross can be tackled

in a way similar to (6). �

The steps of DESIDE-R are summarized in Table I. Each iteration of the proposed method is handled

via solving two SDPs, i.e.,SDPW andSDPX . The complexity of solving the SDPs with accuracy of

ǫa is given byO(N3.5 log(ǫ−1
a )) [30]. A synthesis stage is proposed in the next section to compute high

quality transmit sequence/receive filter pairs(w⋆,x⋆) from the solutions(W⋆,X⋆) obtained herein.

• Convergence and thẽSINRrelax metric:

By cyclically solvingSDPX andSDPW in DESIDE-R, it can be easily verified that the resulting

{minν∈Ω S̃INR
(κ)

relax(ν)}κ∈N is a monotonically increasing sequence [27]. Furthermore,minν∈Ω S̃INRrelax(ν)
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TABLE I

DESIDE-RMETHOD FOR SOLVING THE RELAXED PROBLEMP1

Step 0: Initialize X with xx
H wherex is a random vector inCN .

Step 1: Solve the problemSDPW in (26) to obtainW.

Step 2: Solve the problemSDPX in (24) to obtainX.

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,

e.g. |minν∈Ω S̃INRrelax(ν)
(κ+1) −minν∈Ω S̃INRrelax(ν)

(κ)| ≤ µ for

a givenµ > 0.

is bounded from above; indeed we have that

min
ν∈Ω

S̃INRrelax(ν) ≤ p(ν)H (W⊙X∗)p(ν)

tr{W (Σc(x) +M)}

≤ ‖p(ν)‖2λmax(W ⊙X∗)

tr{MW}

≤ N tr{W} tr{X}
tr{MW}

≤ N e

λmin(M)
. (29)

The third inequality above holds true becausetr{W⊙X∗} ≤ tr{W} tr{X}; and for the last inequality

we have used the fact thattr{MW} ≥ λmin(M) tr{W} [31]. Eq. (29) along with the increasing property

of {minν∈Ω S̃INR
(κ)

relax(ν)}κ∈N ensure the convergence of the sequence of the objective function values.

IV. T HE SYNTHESIS STAGE

As discussed earlier, a judicious synthesis of the optimized transmit sequencex⋆ and receive filterw⋆

from the obtained(W⋆,X⋆) is required to maintain the Doppler robustness. IfW⋆ is rank-one,w⋆ is

available via consideringW⋆ = w⋆w
H
⋆ ; whereas ifX⋆ = xxH , for x⋆ we havex⋆ = xej arg(xHx0).

The rank behavior of SDP solutions, tightness of the semidefinite relaxation, and synthesis methods have

been investigated in the literature (see e.g. [33]–[35], and references therein). For example, it is known

that for a solvable3 SDP withM constraints, there exists an optimal solution of rank at most equal to
√
M [33]. However, the result does not ensure the existence of rank-one solutions for the case considered

in this paper due to the fact thatSDPX andSDPW haveN + 3 andN + 1 constraints, respectively.

Herein we remark on the fact that the ranks ofW⋆ andX⋆ depend on the employed starting point in

3Meaning that the SDP is feasible, bounded, and its optimal value is attained (see [30] for more details).
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addition to the parameters of the design problem. In cases where the rank of eitherW⋆ or X⋆ is larger

than one, the synthesis ofw⋆ or x⋆ is more complicated. To tackle this problem, this section initially

considers the rank-one decomposition method [36]. Then we devise novel synthesis algorithms to design

pairs of (w⋆,x⋆) possessing the desired robustness.

A. The rank-one decomposition method

The main result of the rank-one decomposition method can be summarized as follows [36]:

Theorem 2. LetX be a non-zeroN×N complex Hermitian positive semidefinite matrix (withN ≥ 3) and

{A1,A2,A3,A4} be Hermitian matrices. Suppose that(tr {YA1} , tr {YA2} , tr {YA3}, tr {YA4}) 6=
(0, 0, 0, 0) for any non-zero complex Hermitian positive semidefinite matrix Y of sizeN ×N . Then,

• if rank(X) ≥ 3, one can find, in polynomial time, a rank-one matrixxxH such thatx (synthetically

denoted asx = D1(X,A1,A2,A3,A4) ) is in the range(X), and

xHAix = tr {XAi} , i = 1, 2, 3, 4;

• if rank(X) = 2, for anyz not in the range space ofX, one can find a rank-one matrixxxH such

that x (synthetically denoted asx = D2(X,A1,A2,A3,A4) ) is in the linear subspace spanned by

{z} ∪ range(X), and

xHAix = tr {XAi} , i = 1, 2, 3, 4.

Proof: see [36, Theorem 2.3].

Let (W⋆,X⋆) denote an optimal solution toP1, and let

ν⋆ = argminν∈Ω p(ν)H(W⋆ ⊙X∗
⋆)p(ν). (30)

Considering Theorem 2 and the problemPW , a suitable rank-one matrixw⋆w
H
⋆ can be found such that

tr{(Σc(X⋆) +M)︸ ︷︷ ︸
Q1

W⋆} = wH
⋆ Q1w⋆ (31)

and that 



tr{
(
X⋆ ⊙ (p(ν⋆)p(ν⋆)

H)
)

︸ ︷︷ ︸
Q2

W⋆} = wH
⋆ Q2w⋆

tr{
(
X⋆ ⊙ (p(ν ′)p(ν ′)H)

)
︸ ︷︷ ︸

Q3

W⋆} = wH
⋆ Q3w⋆

tr{
(
X⋆ ⊙ (p(ν ′′)p(ν ′′)H)

)
︸ ︷︷ ︸

Q4

W⋆} = wH
⋆ Q4w⋆

(32)
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whereν ′ andν ′′ are two arbitrary Doppler shifts inΩ. The equations in (32) have been written using the

identity p(ν)H (W⋆ ⊙X∗
⋆)p(ν) = tr{

(
X⋆ ⊙ (p(ν)p(ν)H )

)
W⋆}. Note that Theorem 2 lays the ground

for considering two more Doppler frequencies (i.e.ν ′ andν ′′) other thanν⋆. This leads to a receive filter

w⋆ with a behavior more similar to that ofW⋆ with respect to target Doppler shiftν. Consequently,

w⋆ is obtained viaw⋆ = D1(W⋆,Q1,Q2,Q3,Q4) or w⋆ = D2(W⋆,Q1,Q2,Q3,Q4) for cases where

rank(W⋆) ≥ 3 or rank(W⋆) = 2 , respectively. Note that the condition(tr (YQ1) , tr (YQ2) , tr (YQ3),

tr (YQ4)) 6= (0, 0, 0, 0) on the matricesQ1,Q2,Q3, andQ4 in Theorem 2 is satisfied; more precisely,

there exists(a1, a2, a3, a4) ∈ R4
+ such thata1Q1 + a2Q2 + a3Q3 + a4Q4 ≻ 0 (see [37]).

The x⋆ can be obtained in a similar way; particularly,x⋆ = Dζ(X⋆,R1,R2,X0, I) (ζ = 1 or 2

depending on the rank ofX⋆) where

R1 = Θc(W⋆) + (β/e)I (33)

R2 = W⋆ ⊙
(
(p(ν⋆)p(ν⋆)

H
)∗

. (34)

B. New algorithms for synthesis stage

As explained earlier, the rank-one decomposition method can deal with at most four trace equalities

for the synthesis of the receive filter and the transmit sequence. This ability allows for considering the

values of theS̃INRrelax(ν) at three Doppler shiftsν for the receive filter synthesis (and one Doppler

shift for synthesis of the transmit sequence). However, thepair (w⋆,x⋆) obtained by applying Theorem

2 can lead toSINR(ν) whose behavior with respect to target Doppler shift is not “sufficiently” close to

the behavior of theS̃INRrelax(ν). It means that theSINR(ν) can have significantly lower minimum

value with respect toν. In this subsection, we devise novel algorithms to synthesize high qualityw⋆

and x⋆ from the solutions to the problemP1, i.e. W⋆ and X⋆. The idea is to consider the values

of p(ν)H (W⋆ ⊙X∗
⋆)p(ν) as the optimal energy spectral density (ESD) associated with the transmit

sequence and the receive filter. The sought receive filterw⋆ and transmit sequencex⋆ are obtained to

approximate well the behavior of the optimal ESD with respect to ν. Due to the fact that̃SINRrelax(ν)

(of (W⋆,X⋆)) is a scaled version of the optimal ESD (see (9)), we deal withthe denominator of the

S̃INRrelax(ν) by imposing constraints in the synthesis problems.

Let {ν1, ν2, · · ·, νK} denote a discrete set of target Doppler shifts “uniformly distributed” overΩ, and

consider the following quantities:

gk , pH
k (W⋆ ⊙X∗

⋆)pk ∈ R+, 1 ≤ k ≤ K (35)

wherepk = p(νk). We define the vectorg = [g1, g2, · · ·, gK ]T as the optimal ESD.
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• Receive filter synthesis:Herein the aim is to synthesize the optimized receive filter for given

(W⋆,X⋆). Observe that

pH
k

(
wwH ⊙X∗

⋆

)
pk = wH

(
pkp

H
k ⊙X⋆

)
︸ ︷︷ ︸

Tk

w. (36)

Note also thatTk � 0 for all k and so that there must existVk (of rank dk) such thatTk = VkV
H
k .

Moreover, consideringwHVkV
H
k w ≈ gk, we can write

VH
k w ≈ √

gkuk, 1 ≤ k ≤ K, (37)

where alluk ∈ Cdk are unit-norm. Therefore, the receive filterw⋆ can be found as the minimizer of the

following metric:

‖Aw − u⊙ b‖2 (38)

whereAH = [V1,V2, · · ·,VK ], u = [uT
1 ,u

T
2 , · · ·,uT

K ]T , andb = [
√
g11

T ,
√
g21

T , · · ·,√gK1T ]T . Note

that the optimalS̃INRrelax(ν) (corresponding to(W⋆,X⋆)) is a scaled version of the optimal ESD for

given (W⋆,X⋆) (see (9)). As a result, to obtain the receive filter that yields SINR(ν) values close to

S̃INRrelax(ν), we should also take into account the denominator of thẽSINRrelax(ν), viz.

γ = tr{(Σc (X⋆) +M)W⋆}. (39)

Consequently, we consider the following optimization problem to obtainw⋆:

Psynt
w





min
w,u

‖Aw − u⊙ b‖2

subject to wHGw ≤ γ

‖uk‖2 = 1, 1 ≤ k ≤ K

(40)

with G = Σc (X⋆) + M. In the sequel, we propose a cyclic minimization to tackle the non-convex

problemPsynt
w .

For fixedw, the problemPsynt
w boils down to the non-convex problem:





min
u

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




a1

a2

·
·

aK




−




√
g1u1

√
g2u2

·
·

√
gKuK




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

subject to ‖uk‖2 = 1, 1 ≤ k ≤ K

(41)
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whereak contains the entries ofAw corresponding touk for 1 ≤ k ≤ K. The above minimization can

be decoupled intoK minimization problems of the following form:




min
uk

‖ak −
√
gkuk‖2

subject to ‖uk‖2 = 1.
(42)

The solution to the above nearest-vector problem is simply given by

uk =
ak

‖ak‖
. (43)

For fixedu, the problemPsynt
w is equivalent to the following QCQP:





min
w

wHAHAw − 2ℜ{(u⊙ b)HAw}

subject to wHGw ≤ γ.
(44)

Note that the positive definiteness of the matricesAHA andG ensures the convexity of the above QCQP.

As a result, this QCQP can be solved efficiently via interior point methods or Lagrange multipliers [38].

• Transmit sequence synthesis:A technique similar to the above one can be used for transmit sequence

synthesis. More precisely, we have

pH
k

(
(xxH)∗ ⊙W⋆

)
pk = xH

(
(pkp

H
k )∗ ⊙W⋆

)
︸ ︷︷ ︸

T̃k

x. (45)

Therefore, minimization of the following metric can be employed for transmit sequence synthesis:

‖Ãx− ũ⊙ b‖2 (46)

where T̃k = ṼkṼ
H
k , ÃH = [Ṽ1, Ṽ2, · · ·, ṼK ] and ũ,b are defined similarly to the case of receive

filter design (̃uk ∈ Cd̃k with d̃k being the rank ofṼk). Note that for transmit sequence synthesis, the

similarity and energy constraints should be taken into account in addition to the denominator of the

S̃INRrelax(ν). Consequently, we consider the following optimization problem to synthesize the sought

transmit sequence:

Psynt
x






min
x,ũ

‖Ãx− ũ⊙ b‖2

subject to xHΘc(W⋆)x ≤ ζ

‖x‖2 ≤ e

ℜ{xHx0} ≥ ε

‖ũk‖2 = 1, 1 ≤ k ≤ K

(47)

whereζ = tr{X⋆Θc(W⋆)} andε = e− δ/2. Let x̄ denote the optimal solutionx to the above problem.

Note thatx⋆ =
√
e x̄
‖x̄‖ is such that‖x⋆‖2 = e, andℜ{xH

⋆ x0} ≥ ε. Therefore, one can considerx⋆ as
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the optimized transmit sequencex⋆ which lies in the desired similarity region and is feasible for the

problemP.

The non-convex optimization problemPsynt
x can be dealt with via a cyclic minimization similar to

that used forPsynt
w . For fixedx, the solution to thekth resulting nearest-vector problem is given by

ũk =
ãk

‖ãk‖
(48)

where ãk includes the entries of̃Ax corresponding tõuk for 1 ≤ k ≤ K. On the other hand, the case

of fixed u is handled by solving the following convex QCQP:





min
x

xH
(
ÃHÃ

)
x− 2ℜ{(ũ⊙ b)HÃx}

subject to xHΘc(W⋆)x ≤ ζ

‖x‖2 ≤ e

ℜ{xHx0} ≥ ε.

(49)

Remark 4: Note that thex⋆ synthesized via the rank-one decomposition is a feasible point for the

above convex QCQP. Indeed, the output of the rank-one decomposition procedure in Section IV-A can

be used as a feasible starting point for the proposed cyclic minimization to obtain the transmit sequence.

This can also be done for the receive filter synthesis. �

The steps of DESIDE can be summarized as in Table II. The first step consists of applying DESIDE-R

to the relaxed problemP1 (see Table I). Steps 2 and 3 aim to synthesize high quality receive filters and

transmit sequences, respectively. The cyclic minimizations in step 2 is terminated when a pre-defined

stop criterion is satisfied; e.g.‖w(i+1) − w(i)‖ ≤ ξ for a given ξ > 0 where i denotes the iteration

number. A similar criterion can be used to terminate the algorithm in the step 3. Note that the obtained

x after satisfying the stop criterion in the step 3 is scaled toobtainx⋆ with energye. The complexity

of DESIDE can be addressed considering DESIDE-R and the synthesis stage. The complexity of each

iteration of DESIDE-R isO(N3.5) (see the discussion above Table I). The complexity of each iteration

of the proposed synthesis stage is determined by the complexity of solving the QCQPs in eqs. (44) and

(49). These QCQPs can be solved via described methods in [30]with O(N3) complexity.

V. NUMERICAL EXAMPLES

In this section we provide several numerical examples to examine the effectiveness of DESIDE method.

Throughout the simulations, unless otherwise explicitly stated, we consider a code length4 N = 20,

4It is expected that the output SINR of the receive filter increases by increasingN due to the increase in the number of

degrees of freedom for the design problem (see e.g. [39]) andthe longer coherent processing interval [40].
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TABLE II

THE DESIDE METHOD FOR OBTAININGDOPPLER ROBUST PAIR OF TRANSMIT SEQUENCE AND RECEIVE FILTER

Step 1 (Solving the relaxed problem): Apply DESIDE-R method to the

optimization problemP1 to obtain the pair of(W⋆,X⋆).

Step 2 (Receive filter synthesis): IfW⋆ is rank-one, perform an eigen-

decompositionW⋆ = w⋆w
H
⋆ to obtainw⋆. Otherwise, initializew with

a random vector inCN and do the following operations until a pre-defined

stop criterion is satisfied:

• Obtainu by solving the optimization problem in (41) using (43).

• Solve the convex QCQP in (44) to obtainw.

Step 3(Transmit sequence synthesis): IfX⋆ is rank-one, perform an eigen-

decompositionX⋆ = xx
H to obtain x⋆ = xej arg (xH

x0). Otherwise,

initialize x with a random vector inCN and do the following operations

until a pre-defined stop criterion is satisfied:

• Obtain ũ by solving the optimization problem in (47) for fixedx

using (48).

• Solve the convex QCQP in (49) to obtainx.

number of interfering range ringsNc = 2, and number azimuth sectorsL = 100. The interfering

signals backscattered from various azimuth sectors are weighted according to the azimuth beam-pattern

characteristic of a typical linear array (see [12] for details). A uniformly distributed clutter is assumed

with σ2
(k,i) = σ2 = 100 for all (k, i). In addition, we let the Doppler shifts of the clutter scatterers be

uniformly distributed over the intervalΩc = [ν̄d − ǫ
2 , ν̄d +

ǫ
2 ] = [−0.1, 0.1] [40]. As to the target, we set

αT = 1. Concerning the covariance matrixM of the signal-independent interference, it is assumed that

Mm,n = ρ|m−n| with parameterρ. Regarding the similarity constraint, the generalized Barker code is

used for sequencex0 [41]. This is a constant modulus sequence which has good correlation properties

[12]. The size of the similarity region is controlled byδ0 = δ/e. The total transmit energye is supposed

to be equal to the sequence lengthN . The convex optimization problems are solved via the CVX toolbox

[42].
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A. The effect of the design parameters

• The width ofΩ and the correlations between the interference samples

The performance of the system generally depends on the widthof target Doppler shift intervalΩ and

the correlations between the interference samples (controlled by the parameterρ). Herein the non-robust

design (i.e., with a priori known target Doppler shiftν̃) of the transmit sequence and receive filter (with

a similarity constraint) [12], i.e. the solution to the following problem:




max
x,w

SINR(ν̃)

subject to ‖x‖2 = e

‖x− x0‖2 ≤ δ

(50)

is considered as a benchmark for comparisons. The effects ofthe width of intervalΩ and the value of

ρ are investigated in Fig. 1, where the values ofSINR(ν) obtained by DESIDE (withµ = 10−3 and

δ0 = 0.5) are compared with those of the non-robust design for two intervalsΩ = [1, 3], Ω = [1.5, 2.5]

and forρ ∈ {0, 0.2, 0.5}. For the non-robust design, we reasonably setν̃ equal toνl+νu

2 with Ω = [νl, νu].

In all examples, it is observed that DESIDE provides a robustSINR(ν) over the considered interval

Ω of target Doppler shifts. The minimum value ofSINR(ν) obtained by DESIDE outperforms that of

the non-robust design significantly. The superiority of DESIDE is highlighted by observing that for a

considerable range of the target Doppler shiftν, the SINR(ν) obtained by DESIDE is around10 dB

larger than that of the non-robust design. Furthermore, forany fixedρ, the minimum value ofSINR(ν) in

the intervalΩ = [1, 3] is less than that forΩ = [1.5, 2.5]. As expected, the wider range of target Doppler

shift leads to a more restricted design. Another observation is that for a fixed intervalΩ, the minimum

values ofSINR(ν) increase asρ increases. The observation is compatible with the behaviorof the

upper bound on theminν∈Ω S̃INRrelax(ν) in (29)- by increasing the value ofρ, the value ofλmin(M)

decreases and the upper bound on thẽSINRrelax(ν) becomes larger. Note that in these examples, the

ranks of the optimalW⋆ andX⋆ were equal to one (see section V-D) and hence the obtained pairs of

the transmit sequence and the receive filter areoptimal for the problemP.

• Size of the similarity region

Examples for the robust design of transmit sequences and receive filters with various sizes of sim-

ilarity region are now provided. The values ofSINR(ν) obtained by DESIDE for differentδ0 in

{0.01, 0.2, 0.4, 0.8} are depicted in Fig. 2. The robustness property with respectto the target Doppler

shift ν is observed in all examples. As expected, the larger theδ0, the larger the worst value of the

SINR(ν). This is due to a larger feasibility set for the optimizationproblemSDPX and the fact that
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the optimalW⋆ andX⋆ are rank-one.

B. Convergence of DESIDE-R

Examples of the convergence of DESIDE-R are depicted in Fig.3. This figure shows the values of

the objective function (in the maximization problemP1) obtained through the iterationsκ ∈ N (with

κ denoting the iteration number) forρ = 0.2, δ0 = 0.5, as well as two intervalsΩ = [1, 3] and

Ω = [1.5, 2.5]. As expected, the cyclic maximization approach which is devised to tackleP1 leads to a

monotonically increasing objective functionminν∈Ω S̃INRrelax(ν). The values of the objective function

for Ω = [1.5, 2.5] are larger than those forΩ = [1, 3] (see the discussions associated with Fig. 1). Note

that bothW⋆ andX⋆ are rank-one here, and as a result, the obtained pairs of the transmit sequence and

receive filter areoptimal for the original design problemP.

C. A fast-time coding example

As mentioned earlier (see Remark 1), the problem formulation and the design method can also be

applied to fast-time coding systems. We present an example of such an application by consideringN = 32

andNc = N . The target Doppler shiftν is assumed to be in the intervalΩ = [−0.1, 0.1]. The considered

maximum target Doppler shift corresponds to a target with anapproximate velocity of Mach4 illuminating

by an L-band radar of sampling frequency1 MHz. Owing to the fact that normalized Doppler shift in

this case is proportional to the system bandwidth, we neglect the effect of the Doppler shifts of clutter

scatterers. Fig. 4 shows the obtainedSINR(ν) by DESIDE as well as the results for the non-robust

design, forσ2 = 10, δ0 = 1, andρ = 0. It is observed that employing DESIDE leads to performance

robustness of the system. In this example, the result obtained by DESIDE outperforms that of the non-

robust design for|ν| ≥ 0.035. Moreover, the obtainedW⋆ andX⋆ were rank-one too, similar to the

examples presented earlier.

D. The synthesis algorithms

The performance analysis of the synthesis algorithms is performed by considering cases where the

ranks of the solutions to the relaxed problemP1 are larger than one. We consider20 random starting

points for the synthesis algorithms (withξ = 10−3) and report the best result. In the first example, we

assumeΩ = [1, 2], Ωc = [−0.25, 0.25], σ2 = 100, δ0 = 0.1. For a random initialization, DESIDE-R

provides(W⋆,X⋆) with rank(W⋆) = 2 and rank(X⋆) = 1 (it was numerically observed that as long

asΩ ∩ Ωc = ∅, the rank ofW∗ is equal to one for most of the employed random initial points). The
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optimal ESD corresponding to the pair(W⋆,X⋆) is shown in Fig. 5(a). The values ofSINR(ν) for

the synthesizedw⋆ andx⋆ are shown in Fig. 5(b). This figure also includes the optimal̃SINRrelax(ν)

(corresponding to(W⋆,X⋆)) and the result of applying the rank-one decomposition method. For the

latter method, the best result is obtained withν⋆ = 1.71, ν ′ = 1.3, andν ′′ = 1.5. It is observed that using

the proposed synthesis algorithm leads to values ofSINR(ν) that are close to the optimal ones. Fig. 5(c)

shows the optimalS̃INRrelax(ν), SINR(ν) for (w⋆,x⋆) synthesized via the proposed algorithm and

the result of rank-one decomposition method for another case in whichΩ = [1, 3]. The performance of

the rank-one decomposition method is degraded considerably whereas the difference between the results

of the proposed algorithm and̃SINRrelax(ν) is minor. This can be explained by noting that the rank-

one decomposition method can consider the values of the optimal S̃INRrelax(ν) at up to three points,

i.e., ν⋆, ν ′, and ν ′′. On the other hand, the proposed method considers a constrained synthesis problem

to approximate the values of optimal̃SINRrelax(ν) for an arbitrary set of discreteν. To measure the

goodness of the synthesis algorithms, we define the following loss metric:

L , 10 log

(
minν∈Ω SINR(ν)

minν∈Ω S̃INRrelax(ν)

)
. (51)

In this example, the loss metricL for the proposed method and the rank-one decomposition method are

equal to−0.25 dB and−4.1 dB, respectively. Next we study the effect of the number of optimal ESD

samples, i.e.K, on the performance of the proposed synthesis stage. The results for a transmit sequence

synthesis example are illustrated in Fig. 5(d). For this example, we haveΩ = [0, 2],Ωc = [−0.125, 0.125],

and δ0 = 0.3. Note that it was numerically observed that the rank ofX⋆ is equal to one as long as

Ω ∩ Ωc = ∅. The figure shows the absolute values of loss metricL versusK. It is seen that the

performance improvement forK ≥ 50 is negligible. Another observation is that there is about−2 dB

loss even for sufficiently large values ofK. This might be due to imposing more constraints in the

sequence synthesis as compared to the case of filter synthesis. In the example of Fig. 5(d), the loss of

the rank-decomposition method is around−13 dB; here the latter method can take into account just one

point of the optimalS̃INRrelax(ν), i.e., ν⋆.

VI. CONCLUDING REMARKS

A joint robust design of the transmit sequence and receive filter was considered for cases where the

Doppler shift of the target is unknown. A novel method (called DESIDE) was proposed to tackle the

design problem under the similarity constraint. The main results can be summarized as follows:
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• The robust design problem was cast as a max-min problem by using the model which considers

the effects of the interfering clutter scatterers at various range-azimuth bins and internal Doppler

shifts of these scatterers. It was shown that for a given optimal transmit sequence, the problem can

equivalently be written as a QCQP with infinitely many non-convex constraints and hence the design

problem in general belongs to a class of NP-hard problems.

• DESIDE was devised to tackle the design problem. The method consists of solving a relaxed version

of the design problem (via DESIDE-R) as well as a synthesis stage:

– DESIDE-R was based on a reformulation ofSINR(ν) by consideringW = wwH and

X = xxH , relaxation of the rank-one constraints on the aforementioned matrices, and cyclic

maximization of the relaxed problem. For fixed receive filter, the relaxed optimization problem

was equivalently expressed as an SDP by using a transformation (inspired by Charnes-Cooper

transform) and an SDP representation of the infinitely many affine constraints. Using a similar

technique, an SDP was obtained in the fixed transmit sequencecase.

– New algorithms were devised to synthesize the receive filters and transmit sequences from the

solutions to the relaxed problem. The synthesis algorithmsaim to fit theS̃INRrelax(ν) values

associated with the solutions provided by DESIDE-R. The synthesis stage is cast as constrained

non-convex problems which were dealt with via cyclic minimization.

• The effectiveness of the devised methods was illustrated byproviding several numerical examples.

It was shown that the DESIDE system performance possesses a considerable robustness with respect

to the target Doppler shift. The numerical analysis of the proposed synthesis algorithms confirms

that high quality pairs of receive filter and transmit sequence can be synthesized from the solutions

to the relaxed problem.

The design problem considered in this paper is based on knownparameters of clutter and signal-

independent interference. Robust design of transmit sequences and receive filters with respect to uncer-

tainties in clutter and interference parameters in addition to the target Doppler shift is a possible topic

for future research.
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APPENDIX A

PROOF OFLEMMA 1

Note that the numerator ofSINR(ν) in (2) can be rewritten as

|αT |2
∣∣wH (x⊙ p(ν))

∣∣2 = |αT |2wH(x⊙ p(ν))(x ⊙ p(ν))Hw (52)

= |αT |2(x⊙ p(ν))HwwH(x⊙ p(ν))

= |αT |2p(ν)H
(
wwH ⊙

(
xxH

)∗)
p(ν)

where in the last equality we have used standard properties of the Hadamard product [31]. As to the

denominator ofSINR(ν) in (2), it is straightforward to verify that, for all(k, i),

Γ(x, (k, i)) = Diag(x)Φ
ν̄d(k,i)

ǫ(k,i) Diag(x)H (53)

= xxH ⊙Φ
ν̄d(k,i)

ǫ(k,i) .

Using the matrix variableX = xxH and substituting the above identity in (3) we obtain that

Σc (X) , Σc (x) =

Nc−1∑

k=0

L−1∑

i=0

σ2
(k,i)Jk

(
X⊙Φ

ν̄d(k,i)

ǫ(k,i)

)
JT
k . (54)

As a result, eq. (52) and (54) yield the expression ofSINR(ν) in (9).

To derive the alternative expression ofSINR(ν) in (10), we begin by considering the result of the

Lemma 3.1 in [12] which implies

wHΣc (x)w =

Nc∑

k=0

L−1∑

k=0

σ2
(k,i)x

TDiag(J−kw
∗)Φ

ν̄d(k,i)

ǫ(k,i) Diag(J−kw)x∗. (55)

Note also that

Diag(J−kw
∗)Φ

ν̄d(k,i)

ǫ(k,i) Diag(J−kw) = (J−kw
∗wTJT

−k)⊙Φ
ν̄d(k,i)

ǫ(k,i) , ∀k. (56)

Therefore, using (56) as well as the fact that the covariancematrix Σc (x) � 0, we can write

wHΣc (x)w = xHΘc (W)x (57)

whereW = wwH and

Θc (W) =

Nc−1∑

k=0

L−1∑

i=0

σ2
(k,i)

((
JT
kWJk

)
⊙
(
Φ

ν̄d(k,i)

ǫ(k,i)

)∗)
. (58)

Now let β = wHMw, and observe that

wHΣc (x)w +wHMw = tr

{(
Θc(W) +

(
β

e

)
I

)
X

}
. (59)

The above identity and eq. (52) prove the validity of the alternative expression ofSINR(ν) in (10). �
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Fig. 1. Design examples for various target Doppler shift intervalsΩ and variousρ: (a)Ω = [1, 3] andρ = 0.5, (b)Ω = [1.5, 2.5]

and ρ = 0.5, (c) Ω = [1, 3] and ρ = 0.2, (d) Ω = [1.5, 2.5] and ρ = 0.2, (e) Ω = [1, 3] and ρ = 0, (f) Ω = [1.5, 2.5] and

ρ = 0.
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Fig. 2. Design examples for various sizes of the similarity region:SINR(ν) obtained by DESIDE versus target Doppler shift

ν for δ0 = 0.01, 0.2, 0.4, and0.8.
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Fig. 4. Design example for a fast-time coding system.
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Fig. 5. Results obtained with the proposed synthesis algorithms: (a) an optimal ESD, (b) results of the filter synthesis

corresponding to part (a), (c) another filter synthesis example, (d) absolute value of the loss metricL of the transmit sequence

synthesis versus the number of ESD samplesK for the considered transmit sequence synthesis example. The zoomed areas in (b)

and (c) show the values of the optimal̃SINRrelax(ν) andSINR(ν) of the proposed synthesis method in the neighborhoods

of their minimum values.
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