Digital Signal Processing (DSP)

Fall 2014
Isfahan University of Technology
Mohammad Mahdi Naghsh
mm_naghsh@cc.iut.ac.ir

DIGITAL SIGNAL PROCESSING (DSP)

Lecture 4

Z-Transform (ZT)

Isfahan University of Technology

ZT

- Example: finite length sequence

$$
x[n]= \begin{cases}a^{n}, & 0 \leq n \leq N-1, \\ 0, & \text { otherwise } .\end{cases}
$$

- For ZT we have

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n} \\
& =\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a}
\end{aligned}
$$

ZT

- ROC: the following term should be finite

$$
\sum_{n=0}^{N-1}\left|a z^{-1}\right|^{n}<\infty
$$

- Finite number of summing terms
- The value of $a z^{-1}$ shall be finite
- ROC: entire z-plane except origin $z=0$
- Pole-zero cancellation concept

ZT

- Zeros: $z^{N}=a^{N}$
- Which leads to

$$
z_{k}=a e^{j(2 \pi k / N)}, \quad k=0,1, \ldots, N-1
$$

- Note that:

The zero at $k=0$ cancels the pole at $z=a$.

- and the remaining zeros:

$$
z_{k}=a e^{j(2 \pi k / N)}, \quad k=1, \ldots, N-1
$$

ZT

- Zero-pole plot for $N=16$

ZT

- Some commons ZT pairs: be careful for ROC

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m>0$)
or ∞ (if $m<0$)		
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
25		

ZT

- Properties of ROC of the ZT

PROPERTY 1: The ROC is a ring or disk in the z-plane centered at the origin; i.e., $0 \leq r_{R}<|z|<r_{L} \leq \infty$.
property 2: The Fourier transform of $x[n]$ converges absolutely if and only if the ROC of the z-transform of $x[n]$ includes the unit circle. property 3: The ROC cannot contain any poles.

ZT

- Properties of ROC of the ZT (cont.)

PROPERTY 4: If $x[n]$ is a finite-duration sequence, i.e., a sequence that is zero except in a finite interval $-\infty<N_{1} \leq n \leq N_{2}<\infty$, then the ROC is the entire z-plane, except possibly $z=0$ or $z=\infty$.

PROPERTY 5: If $x[n]$ is a right-sided sequence, i.e., a sequence that is zero for $n<N_{1}<\infty$, the ROC extends outward from the outermost (i.e., largest magnitude) finite pole in $X(z)$ to (and possibly including) $z=\infty$.

ZT

- Remember $x[n]=a^{n} u[n]$

ZT

- Properties of ROC of the ZT (cont.)

Property 6: If $x[n]$ is a left-sided sequence, i.e., a sequence that is zero for $n>$ $N_{2}>-\infty$, the ROC extends inward from the innermost (smallest magnitude) nonzero pole in $X(z)$ to (and possibly including) $z=0$.

- Remember:

$$
x[n]=-a^{n} u[-n-1] .
$$

ZT

- Properties of ROC of the ZT (cont.)
property 7: A two-sided sequence is an infinite-duration sequence that is neither right sided nor left sided. If $x[n]$ is a two-sided sequence, the ROC will consist of a ring in the z-plane, bounded on the interior and exterior by a pole and, consistent with property 3 , not containing any poles.
- Remember:

$$
x[n]=\left(-\frac{1}{3}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[-n-1] .
$$

ZT

- Intuitive observations
- Trick for the proofs

$$
\begin{aligned}
z & =r e^{j \omega} \\
X\left(r e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \omega}\right)^{-n}, \\
X\left(r e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n}
\end{aligned}
$$

- Remember
- Convergence of $X(z)$: absolutely summable $x[n] r^{-n}$
- generally $\quad r_{R}<|z|<r_{L}$

ZT

- Example: given zero/poles

ECE. Dept., Isfahan University of Technology

ZT

- Example (cont.):

ZT

- Example (cont.):

Mohammad Mahdi Naghsh
ECE. Dept., Isfahan University of Technology

ZT

- Interesting example!

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]-\left(-\frac{1}{3}\right)^{n} u[-n-1]
$$

- Two sided signal
- No intersection between ROC of these two terms
- ZT does not exist!
- We may consider each term separately
- ZT is linked to the corresponding ROC

ZT

- Properties of ZT
- Let

$$
\begin{array}{ll}
x_{1}[n] \stackrel{Z}{\longleftrightarrow} X_{1}(z), & \text { ROC }=R_{x_{1}} \\
x_{2}[n] \stackrel{Z}{\longleftrightarrow} X_{2}(z), & \text { ROC }=R_{x_{2}}
\end{array}
$$

- Linearity

$$
a x_{1}[n]+b x_{2}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} a X_{1}(z)+b X_{2}(z), \quad \text { ROC contains } R_{x_{1}} \cap R_{x_{2}}
$$

ZT

- Example:

$$
x[n]=a^{n} u[n]-a^{n} u[n-N]
$$

- Both terms have poles at $\mathrm{z}=a$
- We have seen that

$$
x[n]= \begin{cases}a^{n}, & 0 \leq n \leq N-1, \\ 0, & \text { otherwise } .\end{cases}
$$

- and

$$
X(z)=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a}
$$

ZT

- Remember: pole-zero cancellation
- The results has no pole at $z=a$
- Observation:
- Pole-zero cancellation may occur when using linearity property of ZT. In such cases, the ROC may be larger than the intersection of the ROCs for the associated terms.

ZT

- Time-shift

$$
x\left[n-n_{0}\right] \stackrel{\mathcal{Z}}{\longleftrightarrow} z^{-n_{0}} X(z), \quad \mathrm{ROC}=\begin{aligned}
& R_{x}(\text { except for the } \\
& \begin{array}{l}
\text { possible addition or } \\
\\
\text { deletion of } z=0 \text { or } z=\infty)
\end{array}
\end{aligned}
$$

- A simple proof: $y[n]=x\left[n-n_{0}\right]$

$$
Y(z)=\sum_{n=-\infty}^{\infty} x\left[n-n_{0}\right] z^{-n}=\sum_{m=-\infty}^{\infty} x[m] z^{-\left(m+n_{0}\right)}=z^{-n_{0}} \sum_{m=-\infty}^{\infty} x[m] z^{-m}
$$

ZT

- Example:

$$
X(z)=\frac{z^{-1}}{1-\frac{1}{4} z^{-1}}, \quad|z|>\frac{1}{4}
$$

- We can write

$$
X(z)=z^{-1}\left(\frac{1}{1-\frac{1}{4} z^{-1}}\right), \quad|z|>\frac{1}{4} .
$$

- Therefore,

$$
x[n]=\left(\frac{1}{4}\right)^{n-1} u[n-1]
$$

ZT

- Multiplication by exponential sequence

$$
z_{0}^{n} x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X\left(z / z_{0}\right), \quad \text { ROC }=\left|z_{0}\right| R_{x}
$$

The notation $\mathrm{ROC}=\left|z_{0}\right| R_{x}$ denotes that the ROC is R_{x} scaled by $\left|z_{0}\right|$; i.e., if R_{x} is the set of values of z such that $r_{R}<|z|<r_{L}$, then $\left|z_{0}\right| R_{x}$ is the set of values of z such that $\left|z_{0}\right| r_{R}<|z|<\left|z_{0}\right| r_{L}$.

- When DTFT exist:

$$
e^{j \omega_{0} n} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j\left(\omega-\omega_{0}\right)}\right)
$$

ZT

- Note: if $X(z)$ has a pole at $z=z_{1}$
- Then: $X\left(z_{0}^{-1} z\right)$ will have a pole at $z=z_{0} z_{1}$
- Example:

$$
x[n]=r^{n} \cos \left(\omega_{0} n\right) u[n]
$$

- Using Euler equation

$$
x[n]=\frac{1}{2}\left(r e^{j \omega_{0}}\right)^{n} u[n]+\frac{1}{2}\left(r e^{-j \omega_{0}}\right)^{n} u[n]
$$

ZT

- We know that

$$
u[n] \stackrel{Z}{\longleftrightarrow} \frac{1}{1-z^{-1}}, \quad|z|>1
$$

- Consequently,

$$
\begin{aligned}
\frac{1}{2}\left(r e^{j \omega_{0}}\right)^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{\frac{1}{2}}{1-r e^{j \omega_{0}} z^{-1}}, & |z|>r, \\
\frac{1}{2}\left(r e^{-j \omega_{0}}\right)^{n} u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{\frac{1}{2}}{1-r e^{-j \omega_{0}} z^{-1}}, & |z|>r .
\end{aligned}
$$

- Then simply use linearity

ZT

- Differentiation

$$
n x[n] \stackrel{z}{\longleftrightarrow}-z \frac{d X(z)}{d z}, \quad \mathrm{ROC}=R_{x}
$$

- Simple proof:

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n}, \\
-z \frac{d X(z)}{d z} & =-z \sum_{n=-\infty}^{\infty}(-n) x[n] z^{-n-1} \\
& =\sum_{n=-\infty}^{\infty} n x[n] z^{-n}=\mathcal{Z}\{n x[n]\} .
\end{aligned}
$$

ZT

- Example:

$$
x[n]=n a^{n} u[n]=n\left(a^{n} u[n]\right)
$$

- Using the differentiation property:

$$
\begin{aligned}
X(z) & =-z \frac{d}{d z}\left(\frac{1}{1-a z^{-1}}\right), \quad|z|>|a| \\
& =\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad|z|>|a| .
\end{aligned}
$$

ZT

- Conjugate

$$
x^{*}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^{*}\left(z^{*}\right), \quad \text { ROC }=R_{x}
$$

- Time-reversal

$$
x^{*}[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^{*}\left(1 / z^{*}\right), \quad \mathrm{ROC}=\frac{1}{R_{x}}
$$

The notation ROC $=1 / R_{x}$ implies that R_{x} is inverted; i.e., if R_{x} is the set of values of z such that $r_{R}<|z|<r_{L}$, then the ROC is the set of values of z such that $1 / r_{L}<|z|<1 / r_{R}$. Thus, if z_{0} is in the ROC for $x[n]$, then $1 / z_{0}^{*}$ is in the ROC for the z-transform of $x^{*}[-n]$.

ZT

- Result

$$
x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(1 / z), \quad \text { ROC }=\frac{1}{R_{x}}
$$

- Example:

$$
x[n]=a^{-n} u[-n],
$$

- The time-reversed version of the following sequence

$$
x[n]=a^{n} u[n]
$$

ZT

- Applying time-reversal property:

$$
X(z)=\frac{1}{1-a z^{-1}} \quad|z|>|a|
$$

- This yields

$$
X(z)=\frac{1}{1-a z}=\frac{-a^{-1} z^{-1}}{1-a^{-1} z^{-1}}, \quad|z|<\left|a^{-1}\right|
$$

