Digital Signal Processing (DSP)

Fall 2014
Mohammad Mahdi Naghsh
mm_naghsh@cc.iut.ac.ir

DIGITAL SIGNAL PROCESSING (DSP)

Lecture 8 Filter Design

- Ideal LPF
 - Non-causal
 - Unstable
 - Can not be realized!
- We are going to design realizable filter satisfying a given set of specifications
- Analog filters
- Digital filters

- Design problem: a frequency response (system function) is given. Compute the impulse response/coefficients of the realizable system
- Causal system
- Stable system
- Sometimes linear phase
- Approximate design

• Cont.

$$H(e^{j\omega}) = H_{\rm eff}\left(j\frac{\omega}{T}\right), \qquad |\omega| < \pi$$

A typical set of values

$$\delta_1 = 0.01,$$
 $\delta_2 = 0.001,$
 $\Omega_p = 2\pi (2000),$
 $\Omega_s = 2\pi (3000).$

Usually given in dB

```
ideal passband gain in decibels = 20 \log_{10}(1) = 0 \text{ dB}
maximum passband gain in decibels = 20 \log_{10}(1.01) = 0.086 \text{ dB}
maximum stopband gain in decibels = 20 \log_{10}(0.001) = -60 \text{ dB}
```

- Design constraints
 - Passband

$$(1-\delta_1) \leq |H(e^{j\omega})| \leq (1+\delta_1), \qquad |\omega| \leq \omega_p,$$

Stopband

$$|H(e^{j\omega})| \leq \delta_2, \qquad \omega_s \leq |\omega| \leq \pi$$

Transition band

- FIR: finite impulse response
- IIR: infinite impulse response
- Remark: generalized linear phase
 - Linear phase

$$\theta(\omega) = \angle H(e^{j\omega}) = -c\omega$$
 $H(e^{j\omega}) = |H(e^{j\omega})|e^{-j\omega c}$

generalized linear phase

$$H(e^{j\omega}) = A(e^{j\omega})e^{-j\omega c + jb}$$

- Selection
 - FIR: causal+ stable+ GLP
 - IIR: causal+ stable+ satisfying spec. with lower complexity

- A rich literature on analog filter design
 - Butterworth
 - Chebyshev

- Idea: digital filter (IIR) design via CT filters
 - 1) Design CT filter h(t) from given frequency response
 - 2) Employ impulse invariance to obtain the DT version of the filter

- Other methods
 - Bilinear transform, etc.

Butterworth

Chebyshev (type I): ripple in passband

Chebyshev (type II): ripple in stopband

- FIR filter design: our main focus
 - Arising in discrete-time implementation
 - Approximation of the response in discrete domain
 - (generalized) linear phase
- Design methods
 - Design by windowing
 - Design by optimal approximation

- Windowing method
 - Given the ideal response

$$H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d[n]e^{-j\omega n}$$

And hence

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

Usually non-causal/unstable

The idea is to truncate the impulse response

$$H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d[n]e^{-j\omega n}$$

Actually, the FIR approximation is given by

$$h[n] = \begin{cases} h_d[n], & 0 \le n \le M, \\ 0, & \text{otherwise.} \end{cases}$$

- Stable
- Causal

• Example: LPF

Ideal form

$$h_d[n] = \frac{\sin(\omega_p n)}{\pi n} = \frac{\omega_p}{\pi} \operatorname{sinc}\left(\frac{\omega_p}{\pi}n\right)$$

$$H_d(\omega) = \sum_{n=-\infty}^{+\infty} h_d[n] e^{-j\omega n}$$

Noting that

$$\lim_{n\to\pm\infty}h_d[n]=0$$

We use the following approximation

$$H_d(\omega) \cong \sum_{n=-L}^{+L} h_d[n] e^{-j\omega n}$$

And select the below filter to be causal

$$h[n] = h_d[n-L]$$

Therefore, via employing truncating:

• and $\underline{\textit{Magnitude}}$: $|H(\omega)| \cong |H_d(\omega)|$ $\underline{\textit{Phase}}$: $\angle H(\omega) = \angle H_d(\omega) - \omega L$ $= -\omega L$ in the passband

• Example (cont.)

$$\omega_P = \pi / 4$$
 $L = 20$, $N = 40$

- And in the time domain
 - Causal
 - Stable

Remember: Gibbs phenomenon

$$H_{M}(e^{j\omega}) = \sum_{n=-M}^{M} \frac{\sin \omega_{c} n}{\pi n} e^{-j\omega n}$$

$$(a)$$

$$H_{M}(e^{j\omega}), M = 7$$

$$H_{M}(e^{j\omega}), M = 19$$

$$H_{M}(e^{j\omega}), M = 19$$

 $H_M(e^{j\omega}), M=1$

 $|H_M(e^{j\omega}), M=3$

(d)

(c)

- The name of the method: windowing!!
 - Generally, we can use a window function w[n]:

$$h[n] = h_d[n]w[n],$$

Win the previous case (rectangular window)

$$w[n] = \begin{cases} 1, & 0 \le n \le M, \\ 0, & \text{otherwise.} \end{cases}$$

What happens by using window function?

$$h[n] = h_d[n]w[n],$$

In frequency domain

$$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

The output spectrum is affected by the spectral content of the window

• Illustration

- Special case: w[n]=1 for all n
 - The resulting DTFT is given by impulse train with period; hence

$$H(e^{j\omega}) = H_d(e^{j\omega})$$

- (*)Observation: narrowband window functions are desired
 - Approximately reproducing the desired ideal filter

- (**)Implementation issue: shrinking the window function to reduce computational burden as much as possible
- Items * and ** are conflicting requirements
- Illustration of the conflict for rectangular window

$$W(e^{j\omega}) = \sum_{n=0}^{M} e^{-j\omega n} = \frac{1 - e^{-j\omega(M+1)}}{1 - e^{-j\omega}} = e^{-j\omega M/2} \frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}$$

Linear phase

Spectrum of the rectangular window

- Observations from the figure
 - Larger M leads to narrower mainlobe
 - The region between the first zero-crossing of the sides

$$\Delta_{\omega_m} = 4\pi/(M+1)$$

- Larger M is associated with higher computational load
- The energy of the sidelobes do not change with M
- Oscillation due to sidelobes: Gibbs phenomenon

- The choice of the window type is important
 - Mainlobe width: sharpness
 - Sidelobes energy: oscillation

- For a given length of the window, various shapes can be used
 - Example: smoothing the rectangular window for sidelobe reduction

- Window selection/design
 - Commonly used window functions

Rectangular

$$w[n] = \begin{cases} 1, & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Bartlett (triangular)

$$w[n] = \begin{cases} 2n/M, & 0 \le n \le M/2, \\ 2 - 2n/M, & M/2 < n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Common window (cont.)

Hanning

$$w[n] = \begin{cases} 0.5 - 0.5\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hamming

$$w[n] = \begin{cases} 0.54 - 0.46\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Blackman

$$w[n] = \begin{cases} 0.42 - 0.5\cos(2\pi n/M) + 0.08\cos(4\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

• Time domain behavior

- Application
 - FIR filter design
 - Spectral analysis
- Properties
 - Simple functional form
 - Computation
 - Spectra are concentrated around zero frequency

Spectra

Spectra

Spectra

Summary of windows

TABLE	COMPARISON	-
Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe
Rectangular	-13	$4\pi/(M+1)$
Bartlett	-25	$8\pi/M$
Hanning	-31	$8\pi/M$
Hamming	-41	$8\pi/M$
Blackman	-57	$12\pi/M$

• Cost of lower sidelobe level: wider mainlobe