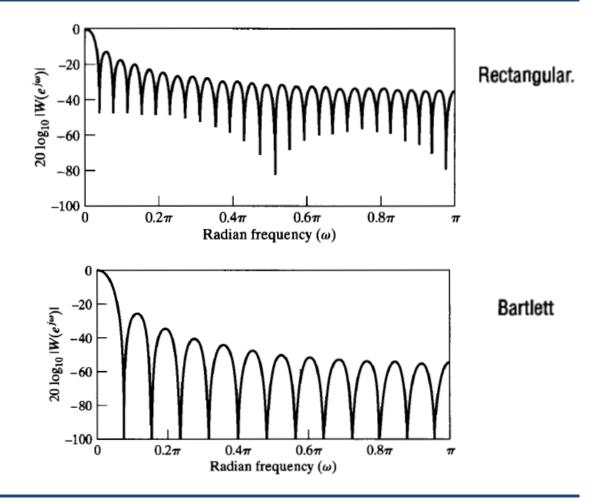
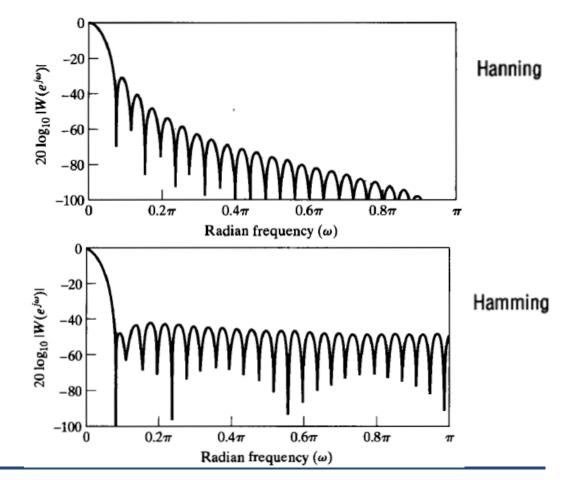
- Application
 - FIR filter design
 - Spectral analysis
- Properties
 - Simple functional form
 - Computation
 - Spectra are concentrated around zero frequency

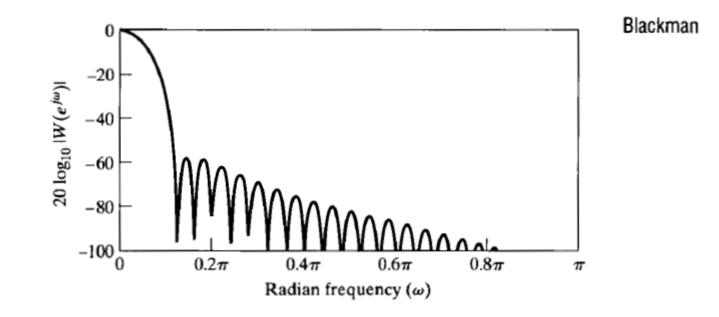
• Spectra



• Spectra



• Spectra



COMPARISON

• Summary of windows

TABLE

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe
Rectangular	-13	$4\pi/(M+1)$
Bartlett	-25	$8\pi/M$
Hanning	-31	$8\pi/M$
Hamming	-41	$8\pi/M$
Blackman	-57	$12\pi/M$

• Cost of lower sidelobe level: wider mainlobe

• Phase issue

– Window symmetry around M/2

$$w[n] = \begin{cases} w[M-n], & 0 \le n \le M, \\ 0, & \text{otherwise;} \end{cases}$$

– and

$$W(e^{j\omega}) = W_e(e^{j\omega})e^{-j\omega M/2}$$

- Symmetric impulse response

 $h_d[M-n] = h_d[n],$

– Then

$$H(e^{j\omega}) = A_e(e^{j\omega})e^{-j\omega M/2},$$

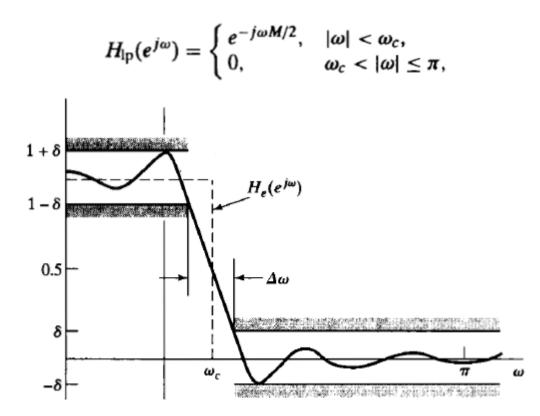
Antisymmetric impulse response

 $h_d[M-n] = -h_d[n]$

$$H(e^{j\omega}) = jA_o(e^{j\omega})e^{-j\omega M/2}$$

- Even/odd real function

• Example: linear phase LPF



– We obtain:

$$h_{\rm lp}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega M/2} e^{j\omega n} d\omega = \frac{\sin[\omega_c(n-M/2)]}{\pi(n-M/2)} \qquad -\infty < n < \infty.$$

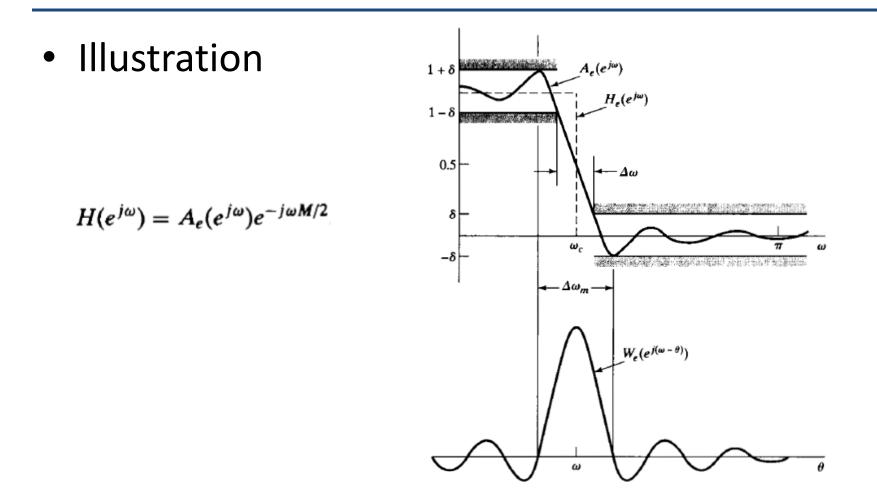
With the following symmetry property

$$h_{\rm lp}[M-n] = h_{\rm lp}[n]$$

- To obtain a linear phase system

$$h[n] = \frac{\sin[\omega_c(n-M/2)]}{\pi(n-M/2)}w[n],$$

Mohammad Mahdi Naghsh ECE. Dept., Isfahan University of Technology



• Comparison

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81 \pi / M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37 \pi / M$
Hanning	-31	$8\pi/M$	44	3.86	$5.01 \pi / M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi/M$

COMPARISON OF COMMONLY USED WINDOWS

- Wider mainlobe: wider transition time
- Smaller sidelobe level: lower ripple in stopband
- Given filter specification: choosing the proper window and its parameters
 - Try and error!
 - Kaiser method: a systematic way

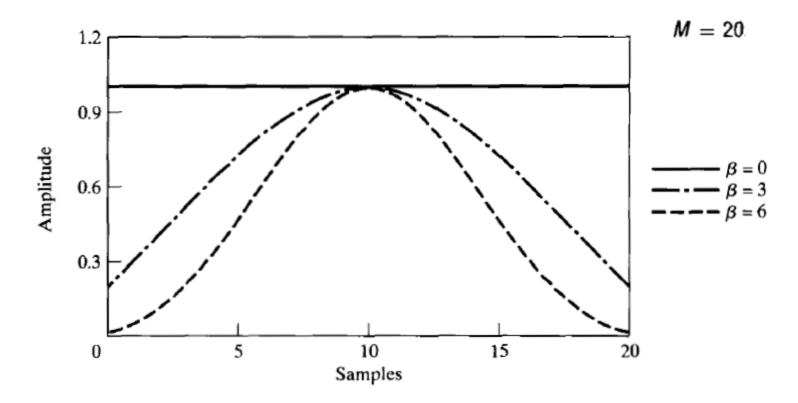
- Kaiser: a near-optimal window
 - For a given length, having the narrowest mainlobe and the lowest possible sidelob level
 - Maximally concentrated around zero frequency

$$w[n] = \begin{cases} \frac{I_0[\beta(1 - [(n - \alpha)/\alpha]^2)^{1/2}]}{I_0(\beta)}, & 0 \le n \le M, \\ 0, & \text{otherwise,} \end{cases}$$

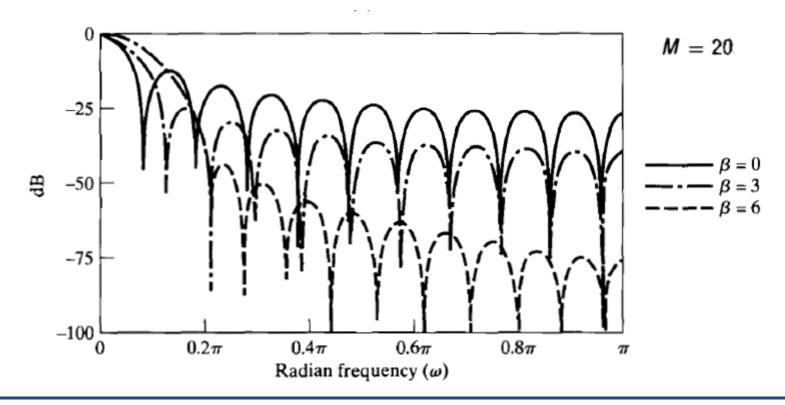
where $\alpha = M/2$, and $I_0(\cdot)$ represents the zeroth-order modified Bessel function

- Parameters:
 - length/shape
 - Trade between sidelobe/mainlobe
 - Higher beta leads to lower sidelobe level
 - Fixed length
 - Higher M leads to narrower mainlobe
 - Fixed beta

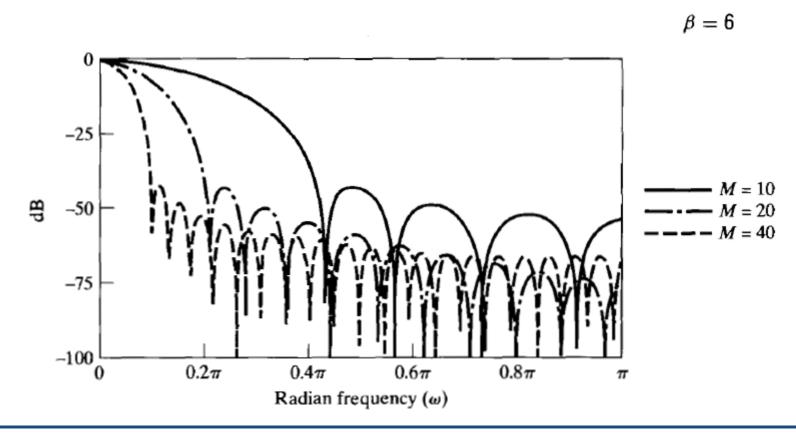
• Time domain



• Frequency



• Frequency



- Useful formula to meet a given specification
 - Obtained via extensive numerical examples
 - Passband

 $|H(e^{j\omega})| \ge 1-\delta$

– Stopband

 $|H(e^{j\omega})| \leq \delta$

Transition time

$$\Delta \omega = \omega_s - \omega_p$$

- Define $A = -20 \log_{10} \delta$

- Then,

$$\beta = \begin{cases} 0.1102(A-8.7), & A > 50, \\ 0.5842(A-21)^{0.4} + 0.07886(A-21), & 21 \le A \le 50, \\ 0.0, & A < 21. \end{cases}$$

- The zero value: rectangular window
- Smaller delta: larger A which means larger beta

• Also, for the length of the filter

$$M = \frac{A-8}{2.285\Delta\omega}.$$

- Approximate value: 2
- Larger window: narrower mainlobe which means shorter transition time

- Example:
 - Specification

$$\omega_p = 0.4\pi, \omega_s = 0.6\pi, \delta_1 = 0.01, \text{ and } \delta_2 = 0.001$$

Note that

$$\omega_c = \frac{\omega_p + \omega_s}{2} = 0.5\pi$$

– Kaiser parameters

$$\Delta \omega = \omega_s - \omega_p = 0.2\pi, \qquad A = -20 \log_{10} \delta = 60.$$

Mohammad Mahdi Naghsh ECE. Dept., Isfahan University of Technology

– Using the mentioned expressions:

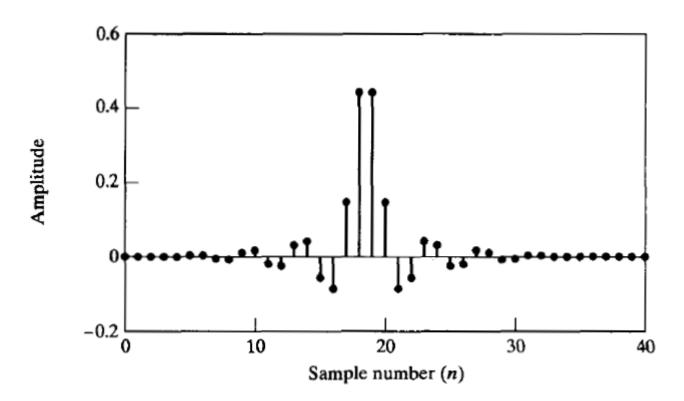
$$\beta = 5.653, \qquad M = 37.$$

- therefore.,

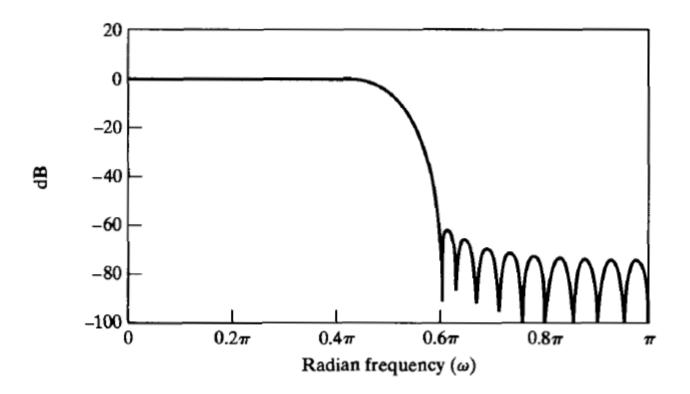
$$h[n] = \begin{cases} \frac{\sin \omega_c (n-\alpha)}{\pi (n-\alpha)} \cdot \frac{I_0[\beta (1-[(n-\alpha)/\alpha]^2)^{1/2}]}{I_0(\beta)}, & 0 \le n \le M, \\ 0, & \text{otherwise,} \end{cases}$$

$$\alpha = M/2 = 37/2 = 18.5.$$

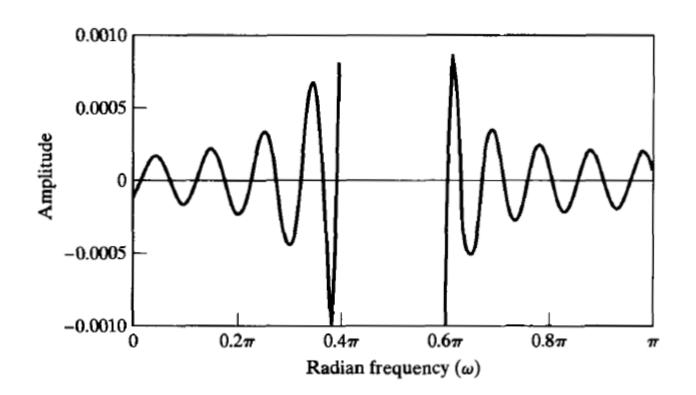
• Impulse response



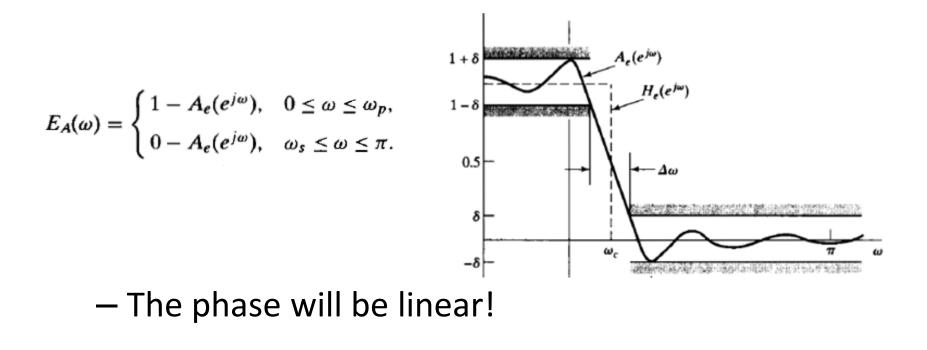
• Designed frequency response



• Error in frequency domain



• Note that the error id given by



• High pass filter

$$H_{\rm hp}(e^{j\omega}) = \begin{cases} 0, & |\omega| < \omega_c, \\ e^{-j\omega M/2}, & \omega_c < |\omega| \le \pi. \end{cases}$$

- and

$$H_{\rm hp}(e^{j\omega}) = e^{-j\omega M/2} - H_{\rm lp}(e^{j\omega}),$$

- with

$$h_{\rm hp}[n] = \frac{\sin \pi (n - M/2)}{\pi (n - M/2)} - \frac{\sin \omega_c (n - M/2)}{\pi (n - M/2)}, \qquad -\infty < n < \infty.$$