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Designing Binary Sequence Sets for MIMO Radar
Systems

M. Alaee Kerahroodi, Student Member, IEEE, M. Modarres-Hashemi, M. M. Naghsh, Member, IEEE

Abstract—In this paper, we aim at designing a set of bi-
nary sequences with good auto- and cross-correlation properties
minimizing a weighted sum of Peak Sidelobe Level (PSL) and
Integrated Sidelobe Level (ISL) for Multiple Input Multiple
Output (MIMO) radar systems. To formulate the problem, we
introduce a Pareto-objective of PSL and ISL to measure the
aperiodic/periodic correlation sidelobes and establish a multi-
objective constrained problem. Then, by using a two-step coordi-
nate descent (CD) framework, we propose an efficient monotonic
algorithm based on Fast Fourier Transform (FFT), to directly
minimize the objective function. Numerical results show that the
proposed algorithm can provide better performance than the
state-of-the-art algorithms.

Index Terms—Binary Sequences, Integrated Sidelobe Level
(ISL), Multiple Input Multiple Output (MIMO), Peak Sidelobe
Level (PSL), Waveform Design.

I. INTRODUCTION

MIMO radar systems usually radiate orthogonal (or incoher-
ent) waveforms by their transmit antennas [1], [2] to allow the
matched filters separating them at receive side [3]. If the codes
(waveforms) have any non-zero cross-correlation sidelobes, the
energy will leak from one waveform to other waveforms in
the receiver matched filter [4] and this affects improperly the
system performance. Hence, a successful design of orthogonal
sequence sets from a family of constant modulus alphabet,
with “good” auto- and cross-correlation properties is crucial
for MIMO radar systems [4]. Additionally, in order to use a
set of sequences in a practical radar system, it requires that
the set is chosen from a specific family of constellation, i.e.,
discrete phase sequences [5].
Let us consider a MIMO radar system with NT transmit
antennas. Each antenna transmits a code vector which is
composed of N sub-pulses (intra-pulse coding) and can be
written at the m-th transmit antenna as,

xm = [xm(1), xm(2), . . . , xm(N)]T ∈ CN , (1)

where xm(n) is the n-th sub-pulse of the transmit code vector
xm. Let {xm}NT

m=1 be columns of the code matrix X , viz. ,

X = [x1,x2, . . . ,xNT
] ∈ CN×NT . (2)

The aperiodic cross-correlation [6] of {xm(n)}Nn=1 and
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{xl(n)}Nn=1 at lag k is defined as,

rAP
ml (k) =

N−k∑
n=1

xm(n)x∗
l (n+ k) = rAP∗

lm (−k),

m, l = 1, . . . , NT , −N + 1 ≤ k ≤ N − 1, (3)

when m = l, equation (3) becomes the aperiodic auto-
correlation of {xm(n)}Nn=1. Similarly, we define periodic
cross-correlation [7] of {xm(n)}Nn=1 and {xl(n)}Nn=1 at lag
k as,

rPml(k) =

N∑
n=1

xm(n)x∗
l (n+ k)mod(N) = rP∗

lm (−k),

m, l = 1, . . . , NT , −N + 1 ≤ k ≤ N − 1. (4)

Again, setting m = l, the rPml(k) becomes the periodic auto-
correlation of {xm(n)}Nn=1. For the simplicity, in the sequel
we use the notation of rml(k) to show both aperiodic and peri-
odic correlation functions. Precisely, setting rml(k) = rAP

ml (k)
and rmm(k) = rAP

mm(k) addresses the aperiodic correlation
functions, whereas setting rml(k) = rPml(k) and rmm(k) =
rPmm(k) addresses the periodic correlation function.
Two commonly used metrics for the goodness of the correla-
tion function for the code matrix X are the PSL and the ISL
which are defined as [8],

PSL = max

{
max
m

{
max
k ̸=0

|rmm(k)|2
}
,

max
m,l
m ̸=l

{
max

k
|rml(k)|2

}}
, (5)

ISL =

NT∑
m=1

N−1∑
k=−N+1

k ̸=0

|rmm(k)|2

+

NT∑
m,l=1
m ̸=l

N−1∑
k=−N+1

|rml(k)|2 (6)

In a MIMO radar system, we interest in achieving a set
of sequences with small PSL and low ISL. Small auto-
correlation sidelobes, indicates that any sequence in the set is
approximately uncorrelated with its own time shifted versions
and therefore it avoids masking weak targets within the range
sidelobes of a strong target; whereas a good cross-correlation
means that any member of the sequences in the set is roughly
uncorrelated with any other members at any shift, which leads
to better separation of the matched filtered outputs at receive
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side [9]. In a pulse MIMO radar system [10], the aperiodic
auto- and cross-correlation functions should have low PSL
and small ISL while in a continuous wave MIMO radar system
[11], due to the succession in transmission, the good properties
must be held on periodic auto- and cross-correlation functions.
The application of designing sequences with good cross-
correlation properties, can also be found in telecommunica-
tion systems. In Code Division Multiple Access (CDMA),
sequences with zero periodic out of phase correlation sidelobes
are widely used for reliable synchronization [12], [13]. In this
respect, the well known families of Frank, Golomb, P1, P2, P3,
P4, PX, M-Sequences, Gold, Kasami and etc. have been intro-
duced and used [14]–[22] in different communication systems.
Unfortunately, these families are not perfectly matched with
the MIMO radar requirements, since they have no constraint
on their auto- and cross-correlation functions simultaneously.
Therefore, various algorithms have been developed for se-
quence set design in MIMO radar systems [14], [23]–[26] to
be discussed below.

A. Background and Related Works

In classical pulse compression approaches, sequences are
designed to have good aperiodic/periodic auto-correlation
properties (small PSL and low ISL) [27]–[31]. Some examples
are binary sequences such as the Barker codes (known up to
length 13) [32], minimum peak sidelobe (MPS) [33] (known
up to length 105), M -sequences, Gold or Kasami sequences
(defined for the specific lengths of 2n− 1 when n is a natural
number) [34] and polyphase sequences such as generalized
barker codes (known up to length 77) codes [35], Frank, P1,
P2, P3 (defined for the lengths that are perfect squares) [15],
[36], Golomb, P4, Px, Zadoff-Chu. In order to overcome the
mentioned limitations, new researches have provided some
sets via optimization-oriented algorithms to design sequences
with good correlation properties [4], [14], [19], [21], [31],
[37]–[45]. Among them, CAN (cyclic algorithm-new), We-
CAN [37], ITROX [41], MWISL, MWISL-Diag [44] deal
with minimization of the ISL metric, whereas MM-PSL [44],
PMAR, POCA and RPOCA deal with the minimization of
a PSL related metric (lp-norm minimization) [45]. Besides,
CPM and DPM [31] consider a weighted function of both
PSL and ISL in the minimization stage.
In recent years, a large number of researches has been devoted
to design waveform sets for MIMO radar systems, to enhance
transmit beamforming [46]–[50], improve target detection
performance [51]–[54], promote radar spatial resolution [6],
[7], [14], [20], [24], [26], [41], [55]–[58] and obtain better
target classification/recognition performance [59]–[61]. The
constraint sets considered in the design stage usually are the
energy, Peak-to-Average-power ratio (PAR), constant modulus
and discrete phase. Notice that, the most heavy constraint in
the optimization stage is the binary phase which is practically
more important.
Designing set of sequences with good correlation properties
(see (5),(6)), is an important line of research for MIMO
systems. In this respect, the simulated annealing (SA) [20] and
cross entropy-based [55] methods are proposed for designing

sequences with good auto- and cross-correlation properties.
However, due to the high computational complexity, these
methods can not be used to efficient design of medium length
sequences. Therefore, Multi-CAN [4] algorithm is proposed
for fast design of unimodular orthogonal set of sequences,
minimizing an almost-equivalent metric of the ISL. This
algorithm is developed for design of set of sequences in both
cases of good aperiodic and periodic1 correlation function.
Subsequently, extending the CAN algorithm, a fast algorithm
named CANARY (CAN complementary) is developed for
designing sets of complementary sequences with good corre-
lation properties [26]. Meanwhile, based on the majorization-
minimization (MM) technique, the MM-Corr algorithm is
proposed [6] to directly minimize the ISL being computation-
ally more effective than Multi-CAN. However, none of the
aforementioned methods considers the design problem with
the minimization of the PSL imposing binary constraint.

B. Contributions

In this paper we propose a mathematical approach for
designing binary (discrete phase) sequences set with appli-
cation in MIMO radar systems. The proposed method can
be used in the other signal processing applications including
spread spectrum communications, channel estimation and fast
start-up equalization, sonar systems, etc. Precisely, the major
contributions of this paper lie in the following three aspects:

1) We have proposed sequence sets that exhibit both low
auto- and cross-correlation sidelobes in terms of PSL.

2) We have tackled the binary design problem by minimiz-
ing a weighted sum of PSL and ISL for the code matrix
X .

3) The proposed method has the ability of designing dis-
crete phase sequences with arbitrary constellation sizes.

C. Organization and Notation

The rest of this work is organized as follows. In Section II,
the design problem is formulated. In Section III, we develop a
two-stage coordinate descent (CD) framework to deal with the
problem. In Section IV, the solution to the scalar sub-problem
for each iteration of CD is derived. Section V provides
several numerical experiments to verify the effectiveness of the
proposed algorithm. Finally, Section VI concludes the paper.
The following notation is adopted in the paper. Bold lowercase
letters for vectors and bold uppercase letters for matrices. The
transpose, the conjugate, and the conjugate transpose operators
are denoted by the symbols (·)T , (·)∗ and (·)H respectively.
The letter ȷ represents the imaginary unit (i.e., ȷ =

√
−1).

For any x ∈ R, |x| and arg(x) represent the modulus and the
argument of x, respectively. The n-th element of the vector x
is denoted by x(n). The abbreviation “s.t.” stands for “subject
to”.

II. PROBLEM FORMULATION

In this section, we cast the code design problem to obtain
a set of sequences with small out-of-phase auto-correlation

1In this case the algorithm is named Multi Pe-CAN.
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and low cross-correlation sidelobes. Note that, the in-phase lag
(i.e., k = 0) of both auto-correlation functions (periodic and
aperiodic) represents the energy component of the sequence
whereas the out-of-phase (i.e., k ̸= 0) represent the sidelobes.
Let define the following metrics for the code matrix X =
[x1,x2, . . . ,xNT

],

f̃1(X) = max
m

{
max
k ̸=0

|rmm(k)|2
}
, (7)

f̃2(X) = max
m,l
m ̸=l

{
max

k
|rml(k)|2

}
, (8)

f̃3(X) =

NT∑
m=1

N−1∑
k=−N+1

k ̸=0

|rmm(k)|2 , (9)

and

f̃4(X) =

NT∑
m,l=1
m ̸=l

N−1∑
k=−N+1

|rml(k)|2, (10)

where f̃1(X) is the maximum auto-correlation value of all
NT transmitting codes whereas f̃2(X) is the maximum
cross-correlation value between all different NT sequences
{xm}NT

m=1. Correspondingly, f̃3(X) is the summation of
the auto-correlation sidelobes of all different NT sequences
whereas f̃4(X) is the summation of the cross-correlation
between all different NT codes. We aim to design a good set
of sequences X⋆ by minimizing all the objective functions
{f̃i(X)}4i=1 simultaneously. Since the design problem is con-
strained to the families of constant modulus discrete phase
sequences, the n-th sub-pulse at m-th transmit antenna can be
written as,

xm(n) = eȷϕm(n), m = 1, . . . , NT and n = 1, . . . , N (11)

with ϕm(n) being the phase of the n-th subpulse of the
transmit code vector xm. The phase ϕm(n) can only be
selected from the following set:

ϕm(n) ∈
{
0,

2π

L
, . . . ,

(L− 1)2π

L

}
≜ ϕL (12)

where L is the number of distinct phase values. Let ω̄ = eȷ
2π
L

and ΨL = {1, ω̄, . . . , ω̄L−1}, the feasibility region for discrete
phase code design problem can be shown as

ΩL = {xm|xm(n) ∈ ΨL, n = 1, . . . , N}. (13)

Therefore, the optimization problem can be cast as,

PX =

min
X

f̃1(X), f̃2(X), f̃3(X), f̃4(X)

s.t. xm,l ∈ ΩL, m, l = 1, . . . , NT

(14)

which is a multi-objective non-convex optimization problem.
In a multi-objective optimization problem, usually a feasible
solution that minimizes all the objective functions simultane-
ously does not exist [62]. A viable means to handle these
type of problems, is to use the scalarization technique2 which

2Scalarizing a multi-objective problem involves the solution of conventional
optimization problems whose objective function is a specific convex combi-
nation of the original figures of merits [63].

exploits as objective a specific weighted sum between the
objective functions. Specifically, we define f̃w(X), parame-
terized in the weighting coefficient w ∈ [0, 1] as,

f̃w(X) = wmax
{
f̃1(X), f̃2(X)

}
+ (1− w)

{
f̃3(X) + f̃4(X)

}
, (15)

where the first term indicates the PSL defined by (5) while
the second term shows the ISL stated in (6). The scalarization
leads to the following design problem,

Pw
X =

min
X

f̃w(X)

s.t. xm,l ∈ ΩL, m, l = 1, . . . , NT

(16)

In the next sections, we devise an efficient algorithm to deal
with the design Problem Pw

X .

III. THE PROPOSED METHOD

In this section, we devise an iterative derivative-free opti-
mization method based on the Coordinate Descent (CD) mini-
mization procedure [64] (also known as alternate optimization
[65]) to sequentially optimize the objective function Pw

X over
one variable keeping fixed the others. The general idea to
tackle Pw

X using the CD algorithm is shown below:
1) Pick coordinate t from 1, 2, . . . , NT .
2) Set x(i+1)

t = argmin
xt

f̃w(xt,X
(i)
−t).

where X
(i)
−t represent all other coordinates at iteration (i+1)

which are keeping fixed. Also, to obtain the optimal code entry
xt(d), we use CD algorithm as below:

1) Pick coordinate d from 1, 2, . . . , N .
2) Set x(h+1)

t (d) = arg min
xt(d)

fw(xt(d),x
(h)
t,−d).

where x
(h)
t,−d represent all other coordinates of the code vector

xt at iteration (h + 1) which are keeping fixed. Thus, the
CD framework solves optimization problems by successively
performing minimization along coordinate directions or hyper-
planes. Indeed, in a nutshell to handle the Problem Pw

X we
resort into the following subproblems:

• Outer loop; Designing a code vector xt keeping fixed
the other code vectors.

• Inner loop; Optimizing each scaler variable xt(d) of xt,
keeping fixed the other entries of the code xt.

Therefore, by solving a sequence of simpler optimization
problems, each subproblem will have a lower dimension in
the minimization procedure, and thus can typically be solved
easier than the original problem. Accordingly, we perform the
optimization procedure cyclically in an outer and inner loop
as specified below.

A. Outer loop

In the outer loop, we select the code vector xt, to be
optimized while keeping the others fixed. The optimization
Problem Pw

X at iteration (i+ 1) boils down to,

Pw

t,X(i) =

min
xt

f̃w(xt,X
(i)
−t)

s.t. xt ∈ ΩL,
(17)
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where

X
(i)
−t =

[
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
t−1,x

(i)
t+1, . . . ,x

(i)
NT

]
∈ CN×NT−1

(18)
refers to the remaining sequences in X other than xt, and

f̃w(xt,X
(i)
−t) =

f̃w

(
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
t−1,xt,x

(i)
t+1, . . . ,x

(i)
NT

)
. (19)

Thus, denoting by X
⋆(i+1)
t the optimal solution to Pw

t,X(i) ,
the optimized code matrix at iteration (i+ 1) becomes,

X
⋆(i+1)
t =

[
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
t−1,x

⋆
t ,x

(i)
t+1, . . . ,x

(i)
NT

]
. (20)

As a result, starting from an initial code matrix X(0), the code
matrices X(1), X(2), X(3), . . . are obtained iteratively3.

B. Inner loop

In the inner loop, we aim to optimize the code entries of
the selected code vector xt. Again, using the CD algorithm,
in the inner loop and in iteration (h+1), we choose the scaler
xt(d) as the variable to be optimized and put the remaining
code entries in the vector x(h)

t,−d ∈ CN−1 defined as,

x
(h)
t,−d = [x

(h)
t (1), . . . , x

(h)
t (d− 1),

x
(h)
t (d+ 1), . . . , x

(h)
t (N)]T . (21)

Consequently, the optimization problem at the inner loop in
iteration (h+ 1) is,

Pw

d,x(h)
t

min
xt(d)

fw

(
xt(d);x

(h)
t,−d

)
s.t. xt(d) ∈ ΩL

(22)

where

fw

(
xt(d);x

(h)
t,−d

)
=

fw

(
x
(h)
t (1), x

(h)
t (2), . . . , x

(h)
t (d− 1), xt(d),

x
(h)
t (d+ 1), . . . , x

(h)
t (N − 1), x

(h)
t (N)

)
. (23)

Thus, denoting x⋆
t (d) as the optimal solution to (22), the

optimized code vector for the t-th transmit antenna at iteration
(h+ 1) will be,

x
(h+1)
t = [x

(h)
t (1), x

(h)
t (2), . . . , x⋆

t (d), . . . , x
(h)
t (N)]T .

As a result, starting from an initial code x
(0)
t , a sequence

x
(1)
t ,x

(2)
t ,x

(3)
t , . . . are obtained iteratively.

Remark 1. In order to tackle the optimization Problem (22),
we define,

f1(xt) = max
k ̸=0

|rtt(k)|2 , (24)

3The super scripts (i) and (i + 1) for xt and x⋆
t are implicit due to the

simplicity.

Algorithm 1 BiST algorithm for MIMO radar systems

Input: Initial code matrix X(0) ∈ CN×NT , w ∈ [0, 1];
Output: Optimal sequence set X⋆;

1) Initialization.
• Compute the initial objective value

f̃w(x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
NT

) using equation (19);
• Set t := 1 and i := 0;

2) Improvement.
• Solve Pw

t,X(i) and obtain x⋆
t

by doing the following steps:

a) Initialization.
– Compute the initial objective value

fw(x
(0)
t (1), x

(0)
t (2), . . . , x

(0)
t (N)) using

equation (23);
– Set d := 1 and h := 0;

b) Improvement.
– Solve Pw

d,x(h)
t

and obtain x⋆
t (d);

– Set h := h+ 1 and
x
(h)
t =

[
x
(h−1)
t (1), . . .,x⋆

t (d), . . . , x
(h−1)
t (N)

]T
;

c) Stopping Criterion.
– If |fw(x(h)

t ) − fw(x
(h−1)
t )| < ϵ, stop. Oth-

erwise, update d, i.e., if d < N , d = d + 1,
otherwise d = 1, and go to the step b;

d) Output.
– Set x⋆

t = x
(h)
t .

• Set i := i+ 1 and
X

(i)
t =

[
x
(i−1)
1 ,x

(i−1)
2 , . . . ,x⋆

t , . . . ,x
(i−1)
NT

]
;

3) Stopping Criterion.
• If |f̃w(X(i)

t )− f̃w(X
(i−1)
t )| < ϵ, stop. Otherwise,

update t, i.e., if t < NT , t = t+1, otherwise t = 1,
and go to the step 2;

4) Output.
• Set X⋆

t = X
(i)
t .

f2(xt) = max
l

l ̸=t

{
max

k
|rtl(k)|2

}
, (25)

f3(xt) =
N−1∑

k=−N+1
k ̸=0

|rtt(k)|2 , (26)

and

f4(xt) =

NT∑
l=1
l ̸=t

N−1∑
k=−N+1

|rtl(k)|2, (27)

where f1(xt) is the maximum auto-correlation sidelobe of
t-th transmitting waveform whereas f2(xt) is the maximum
cross-correlation value between the t-th code vector and the
remained code vectors in the sequence set. Similarly, f3(xt)
is the summation of the sidelobes of t-th waveform whereas
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f4(xt) is the summation of cross-correlation between t-th
waveform and the remained sequences. Consequently,

fw

(
xt(d);x

(h)
t,−d

)
=wmax {f1(xt), f2(xt)} (28)

+ (1− w) {f3(xt) + f4(xt)} .■ (29)

Finally, to obtain the optimal sequence set X⋆, we solve
Problem Pw

d,x(h)
t

sequentially and find the optimal code vector
x⋆
t at the inner loop and tackle Problem Pw

t,X(i) to obtain the

optimal set of sequences X⋆ = [x⋆
1,x

⋆
2, . . . ,x

⋆
NT

] at the outer
loop. A summary of the proposed approach to obtain X⋆ can
be found in Algorithm 1. Since the proposed approach can
effectively design binary set of sequences, we name it Binary
Sequences seT (BiST)4 method.
To proceed further, in the following we make explicit the
functional dependence of the objective function in Pw

d,x(h)
t

,

i. e., fw
(
xt(d);x

(h)
t,−d

)
over the optimization variable xt(d).

1) Aperiodic Correlation Function: Let us start with the
aperiodic auto-correlation function of the t-th selected transmit
code xt. As to the optimization variable xt(d) in (22), it is
verified that,

rAP
tt (k) = aAP

dktxt(d) + bAP
dktx

∗
t (d) + cAP

dkt ,

k = −N + 1, . . . , N − 1 (30)

where5,
aAP
dkt ≜ x∗(h)

t (d+ k)IA(d+ k), (31)

bAP
dkt ≜ x

(h)
t (d− k)IA(d− k), (32)

and

cAP
dkt ≜

N−k∑
n=1,n̸={d,d−k}

x
(h)
t (n)x

∗(h)
t (n+ k)IA(k + 1)

+
N∑

n=−k+1,n ̸={d,d−k}

x
(h)
t (n)x

∗(h)
t (n+ k)IB(k)

(33)
with IA(k) and IB(k) being the indicator functions of sets
A = {1, 2, . . . , N} and B = {−1,−2, . . . ,−N + 1} respec-
tively, i.e., IA(v) = 1 if v ∈ A, otherwise IA(v) = 0.
Similarly, the cross-correlation function rAP

tl (k) with explicit
dependence on xt(d) becomes,

rAP
tl (k) = aAP

dkl xt(d) + cAP
dkl , k = −N + 1, . . . , N − 1. (34)

with

aAP
dkl ≜ x

∗(h)
l (d+ k)IA(d+k), k = −N+1, . . . , N−1. (35)

and

cAP
dkl ≜

N−k∑
n=1,n̸=d

x
(h)
t (n)x

∗(h)
l (n+ k)IA(k + 1)

+
N∑

n=−k+1,n̸=d

x
(h)
t (n)x

∗(h)
l (n+ k)IB(k), (36)

4BiST means the number “20” in Persian language and also refers to
something that is perfect.

5For notational simplicity, the dependence of auto/cross correlation on h is
implicit.

2) Periodic Correlation Function: Next, we provide the
functional dependence of the periodic correlation function on
the variable xm(d). As to the auto-correlation function, we
can write,

rPtt(k) = aPdktxt(d) + bPdktx
∗
t (d) + cPdkt,

k = −N + 1, . . . , N − 1. (37)

where

aPdkt ≜ x
∗(h)
t (d+ k)IA(d+k)+x

∗(h)
t (d+ k −N)IA(d+k−N)

(38)
and

bPdkt ≜ x
(h)
t (d− k)IA(d−k)+x

(h)
t (d− k +N)IA(d−k+N)

(39)
with

cPdkt ≜
N−k∑

n=1,n ̸={d,d−k}

x
(h)
t (n)x

∗(h)
t (n+ k) (40)

+

N∑
n=N−k+1,n̸={d,d−k+N}

x
(h)
t (n)x

∗(h)
t (n+ k −N).

(41)

Also, for the periodic cross-correlation function we have,

rPtl (k) = aPdklxt(d) + cPdkl, k = −N + 1, . . . , N − 1. (42)

where

aPdkl ≜ x
∗(h)
l (d+ k)IA(d+ k)

+ x
∗(h)
l (d+ k +N)IA(d+ k +N)

+ x
∗(h)
l (d+ k −N)IA(d+ k −N), (43)

and

cPdkl ≜
N∑

n=1,n̸=d

[
x
(h)
t (n)x

∗(h)
l (n+ k)IA(n+ k)

+ x
(h)
t (n)x

∗(h)
l (n+ k +N)IA(n+ k +N)

+ x
(h)
t (n)x

∗(h)
l (n+ k −N)IA(n+ k −N)

]
. (44)

In the next section, we devise a method for dealing with (22).

IV. THE CODE ENTRY DESIGN

In this section, we devise an efficient algorithm to find
the optimal solution of the following non-convex, constrained
problem,

Pw

d,x(h)
t

min
xt(d)

fw

(
xt(d);x

(h)
t,−d

)
s.t. xt(d) ∈ ΩL

(45)

According to the derived dependency of the correlation func-
tions to the complex variable xt(d) in the previous section,
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we observe,

fw

(
xt(d);x

(h)
t,−d

)
=

wmax

{
max
k ̸=0

|adktxt(d) + bdktx
∗
t (d) + cdkt|2 ,

max
l

l ̸=t

[
max

k
|adklxt(d) + cdkl|2

]}

+ (1− w)

{ N−1∑
k=−N+1

k ̸=0

|adktxt(d) + bdktx
∗
t (d) + cdkt|2

+

NT∑
l=1
l ̸=t

N−1∑
k=−N+1

|adklxt(d) + cdkl|2
}
. (46)

Notice that in terms of the phase ϕt(d) = arg(xt(d)), the
optimization Problem Pw

d,x(h)
t

can be expressed as,

Pw

d,ϕ
(h)
t

{
min
ϕt(d)

fw (ϕt(d))

s.t. ϕt(d) ∈ ϕL

(47)

with ϕL being defined in (12). In the sequel, exploiting
Discrete Fourier Transform (DFT), we find the optimal so-
lution ϕ⋆

t (d) for the constrained non-convex Problem Pw

d,ϕ
(h)
t

assuming two following cases:

A. General Discrete Phase

For L ≥ 3 and according to the equations (30) and (37)
in the optimization Problem Pw

d,ϕ
(h)
t

, the squared modulus of
the auto-correlation functions in correspondence of the phase
variable ϕt(d) can be written as,

|rtt,ϕt(d)(k)|
2 = |adkteȷϕt(d) + bdkte

−ȷϕt(d) + cdkt|2,

correspondingly, according to the equations (34) and (42) for
the cross-correlation functions it can be verified that,

|rtl,ϕt(d)(k)|
2 = |adkleȷϕt(d) + cdkl|2.

The following lemma provides a key result to tackle Problem
Pw

d,ϕ
(h)
t

.

Lemma 1 Let ϕt(q) =
2π(q−1)

L , q = 1, . . . , L ,

νdkz =

[
|rtz,ϕt(1)(k)|

2, |rtz,ϕt(2)(k)|
2, . . . ,

|rtz,ϕt(L)(k)|2
]T

, (48)

where z stands for either t or l and νdkz ∈ RL.
For L ≥ 3, also define6

ζdkz = [adkz, cdkz, bdkz,01×(L−3)]
T ∈ RL.

Then,
νdkz = |DFT(ζdkz)|2, (49)

with DFT(ζdkz) is the L-points DFT of the vectors ζdkz .
Notice that the square modulus is performed element wise.

6Notice that adkt, bdkt and cdkt are zero when k = 0.

Proof. See Appendix A.

Inspiring from Lemma 1, we define the matrix Uz ∈
R(2N−1)×L whose k-th row is νT

dkz . Notice that, the matrix
U t contains all possible auto-correlation sidelobes7 of differ-
ent lags (i. e., k), whereas all the cross-correlation values for
different possible lags are written in U l. Let up

z ∈ RL and
us
z ∈ RL be the vectors containing the maximum values and

the summation of each columns of the matrix Uz , respectively.
We can write,

ωt(d) = wmax

{
up
t ,max

l
l ̸=t

up
l

}

+ (1− w)

{
us
t +

NT∑
l=1
l ̸=t

us
l

}
, (50)

where ωt(d) ∈ RL and the operation of maximum between
two vectors is defined element wise. Then, the optimal solution
to Pw

d,ϕ
(h)
t

is given by

ϕ⋆
t (d) =

2π(q⋆ − 1)

L
, (51)

where
q⋆ = arg min

q=1,...,L

{
ωt(d)

}
, (52)

Hence, based on Lemma 1 and (51), the optimal phase code
entry can be efficiently computed as x⋆

t (d) = eȷϕ
⋆
t (d) using

DFT.

B. Binary Sequence Design (L = 2)
In the case of designing binary sequences, observe that

xt(d) ∈ {−1,+1} is a real variable, and the aperiodic auto-
correlation function in the equation (30) will have a slight
modification as,

rAP
tt (k) = aAP

dktxt(d) + cAP
dkt , k = −N + 1, . . . , N − 1.

where

aAP
dkt ≜ x

(h)
t (d+ k)IA(d+ k) + x

(h)
t (d− k)IA(d− k)

and

cAP
dkt ≜

N−k∑
n=1,n̸={d,d−k}

x
(h)
t (n)x

(h)
t (n+ k)IA(k + 1)

+
N∑

n=−k+1,n̸={d,d−k}

x
(h)
t (n)x

(h)
t (n+ k)IB(k)

with ϕt(d) ∈ {0, π}. Also, according to (37) in the case of
periodic auto-correlation function, we can write,

rPtt(k) = aPdktxt(d) + cPdkt, k = −N + 1, . . . , N − 1.

where

aPdkt ≜ x
(h)
t (d+ k)IA(d+k)+x

(h)
t (d+ k −N)IA(d+k−N)

+ x
(h)
t (d− k)IA(d− k)

+ x
(h)
t (d− k +N)IA(d− k +N)

7Notice that all the values of νdkt are zero when k = 0.
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with

cPdkt ≜
N−k∑

n=1,n̸={d,d−k}

x
(h)
t (n)x

(h)
t (n+ k)

+

N∑
n=N−k+1,n̸={d,d−k+N}

x
(h)
t (n)x

(h)
t (n+ k −N).

and accordingly ζdkt will be defined as,

ζdkt = [adkt, cdkt]
T ∈ R2 (53)

for both cases of aperiodic and periodic auto-correlation
function. The rest of the procedure (i. e., calculation of νdkz ,
Uh, etc.) is the same as the previous part.

Finally, we provide Algorithm 2 to precisely show the steps
of the proposed approach for solving Problem Pw

d,ϕ
(h)
t

.

Algorithm 2 Discrete Phase Code Entry Optimization

Input: Initial code vector x(h)
t , code entry d, w, and L;

Output: Optimal solution x⋆
t (d);

1) Set ∀k ∈ {−N + 1, . . . , N − 1}
• Set

ζdkt =

{
[adkt, cdkt, bdkt,01×(L−3)]

T L ≥ 3

[adkt, cdkt]
T L = 2

• Set ζdkl = [adkl, cdkl,01×(L−2)]
T ;

• Set νdkt = |FFT(ζdkt)|2 and νdkl = |FFT(ζdkl)|2;
2) Define Uz , obtain up

z , us
z and calculate

ωt(d) = wmax

{
up
t ,max

l
l ̸=t

up
l

}

+ (1− w)

{
us
t +

NT∑
l=1
l ̸=t

us
l

}
;

3) Find the index q⋆ where ωt(d) is minimum;
4) Set x⋆

t (d) = eȷϕ
⋆
t (d) with ϕ⋆

t (d) =
2π(q⋆−1)

L .

Remark 2. Algorithm 2 needs the evaluation of (2N − 1)
different L-points DFTs for auto-correlation functions and
NT (2N−1) different L-points DFTs for the cross-correlation
function. Each of them can be efficiently computed via a Fast
Fourier Transform (FFT) [66]. Therefore the computational
complexity order for each waveform xt is O(NTNL log2 L)
(at the inner loop) and the overall computational complexity
of Algorithm 1 will be O(N2

TNL log2 L).

V. PERFORMANCE ANALYSIS

We consider a MIMO radar system with NT = 4 transmit
antennas, and distinct phase numbers of L = 2, 4. We also
set the stopping criteria |f̃w(X(i))− f̃w(X

(i−1))| ≤ 10−5 to
terminate the whole procedure while the stopping criteria in
design of t-th transmit waveform is |fw(x(h)

t )−fw(x
(h−1)
t )| ≤

10−5. As the benchmark for sequences set design with good

aperiodic and periodic correlation functions, we use Multi-
CAN and Multi-PeCAN algorithms8, respectively [8]. Notice
that, we have included a set of m-sequences whenever the con-
stellation size is L = 2. Correspondingly, we have chosen the
appropriate code lengths where the m-sequences are defined
(i. e., 2n − 1, n = 1, 2, . . .) in the simulations.

A. PSL Minimization

We set w = 1 in (15) to perform PSL minimization. In the
first step and in Fig. 1, we assess the convergence behavior
of the BiST algorithm in line with the outer loop iterations.
For the both cases of aperiodic (Fig. 1a) and periodic (Fig.
1b) correlation functions, the PSL values obtained via BiST
algorithm are illustrated. Precisely, we start from a set of
random sequences with code length N = 63, settled down
in an initialization matrix X(0), and obtain the PSL of the
optimal set of sequences X⋆.
In Fig. 2, we plot the obtained PSL9 values via BiST when
the code length is N = {31, 63, 127, 255, 511}. As the
benchmark, PSL values of a set of sequences obtained trough
Multi-CAN algorithm are illustrated in this figure. Notice
that, the random starting set of sequences for both BiST and
Multi-CAN algorithms, is the same10. Besides, the PSL values
of a set of m-sequences are also plotted in Fig. 2a where
the constellation size is L = 2, whereas the PSL values
corresponding to the constellation size L = 4, are plotted in
Fig. 2b.
In Fig. 3, we irritate the same simulation as for the Fig. 2,
but considering periodic correlation function. Consequently,
we use Multi-PeCAN (instead of Multi-CAN) algorithm as the
benchmark. Notice that, in both cases of aperiodic and periodic
correlation functions, the set of obtained sequences via the
BiST algorithm, has a significant gain over its counterparts
for all different lengths. As we can see from the figures 2 and
3, the set of random sequences achieve lower PSL values than
the set of m-sequences. This implies that in a MIMO radar
system, the use of m-sequences is not recommended (due to
high values of the cross-correlation lags).
Finally, Fig. 4 illustrates auto-correlation (Fig. 4a) and cross-
correlation (Fig. 4b) levels of a typical set of sequences
obtained through BiST where N = 63 and L = 2. This
figure, provides a visual understanding of the goodness of the
proposed algorithm.

B. ISL Minimization

We set w = 0 in (15) to resort to the problem of ISL
minimization. Again, we provide the convergence behavior of
the BiST algorithm in the first step. We set N = 63 and start
from a set of random sequences to plot Fig. 5. As depicted
in this figure, in both cases of sequence set design with good

8The Matlab codes for Multi-CAN and Multi-PeCAN are downloaded from
the book website http://www.sal.ufl.edu/book/.

9We use PSLAP to show the PSL values corresponding to the minimization
of aperiodic correlation functions whereas the PSL values related to the
minimization of periodic correlation functions are depicted by PSLP .

10The PSL values corresponding to the starting set of random sequences
are depicted in the figure.
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(a) Aperiodic correlation function.
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(b) Periodic correlation function.

Fig. 1: Convergence behavior of the BiST algorithm in
PSL(dB) minimization.

(a) Comparison between obtained PSLAP (dB) of ape-
riodic correlation functions for different sets of m-
sequences, random, Multi-CAN and BiST (L = 2).

(b) Comparison between obtained PSLAP (dB) of ape-
riodic correlation functions for different sets of random
sequences, Multi-CAN and BiST (L = 4).

Fig. 2: PSLAP (dB) versus sequence length.

(a) Comparison between obtained PSLP (dB) of periodic
correlation functions for different sets of m-sequences,
random, Multi-PeCAN and BiST (L = 2).

(b) Comparison between obtained PSLP (dB) of peri-
odic correlation functions for different sets of random
sequences, Multi-PeCAN and BiST (L = 4).

Fig. 3: PSLP (dB) versus sequence length.

aperiodic (Fig. 5a) and periodic (Fig. 5b) correlation functions,
BiST retains its monotonic decreasing behavior.
In Fig. 6, setting N = {31, 63, 127, 255, 511} we asses the

performance of the proposed method in ISL11 minimization.
The benchmark is Multi-CAN in case of sequence design
with good aperiodic correlation function (Fig. 6) and is Multi-
PeCAN when we design set of sequences with good periodic
correlation function. Also, the ISL values corresponding to a
set of m-sequences are plotted where the constellation size
is L = 2 (Fig. 6a and Fig. 7a). As figures 6 and 7 show,
BiST algorithm achieves lower ISL than its counterparts for
all sequence lengths and at both constellation sizes L = 2, 4.
As an example, the periodic auto- and cross-correlation func-
tions of the obtained set of sequences for N = 63 and L = 4
are shown in Fig. 8a and Fig. 8b, respectively.

C. Pareto-Optimal Solution

In this subsection, the effect of the parameter w on the
designed set of sequences is assessed. Table I reports PSL and
ISL of the solutions obtained via BiST assuming N = 63,
w ∈ {w1, . . . , w5} with wi = (i−1)

4 and i = 1, . . . , 5. The
starting set of sequences is random when w = w1, but the
starting set of sequences at w = wi, i > 1 is the optimized set

11We use ISLAP to show the ISL values corresponding to the minimization
of aperiodic correlation functions whereas the ISL values related to the
minimization of periodic correlation functions are depicted by ISLP .
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(a) Aperiodic auto-correlation of an obtained sequence
via BiST setting w = 1 (PSL minimization).
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(b) Aperiodic cross-correlation of an obtained sequence
via BiST setting w = 1 (PSL minimization).

Fig. 4: Correlation levels versus lag (k) of the sequences
obtained via BiST (L = 4).
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Fig. 5: Convergence behavior of the BiST algorithm in
ISL(dB) minimization.

(a) Comparison between obtained ISLAP (dB) of ape-
riodic correlation functions for different sets of m-
sequences, random, Multi-CAN and BiST (L = 2).

(b) Comparison between obtained ISLAP (dB) of aperi-
odic correlation functions for different sets of random
sequences, Multi-CAN and BiST (L = 4).

Fig. 6: ISLAP (dB) versus sequence length.

TABLE I: PSL and ISL of “Pareto-Optimal” Solutions (binary
codes, L = 2)

w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1

PSLAP (dB) 26.84 25.98 25.02 24.05 23.52
ISLAP (dB) 46.93 46.93 46.94 46.97 47.49

PSLP (dB) 27.95 27.23 27.01 26.45 24.42
ISLP (dB) 49.79 49.85 49.88 50.12 50.76

of sequences at w = wi−1.
In Table I, we show the obtained values of PSL and ISL for
both aperiodic and periodic correlation functions in the case
of binary set of sequences (L = 2). The corresponding values
for the case of L = 4 is written in Table II. As expected, w
trades-off ISL and PSL values. Specifically, the higher the w
the better the PSL while the worst the ISL. That is a classical
feature of bi-objective Pareto curves.

TABLE II: PSL and ISL of “Pareto-Optimal” Solutions (L =
4)

w = 0 w = 0.25 w = 0.5 w = 0.75 w = 1

PSLAP (dB) 24.29 24.29 23.87 23.15 21.65
ISLAP (dB) 46.92 46.95 46.95 46.97 47.09

PSLP (dB) 26.82 25.98 25.42 25.22 22.59
ISLP (dB) 49.45 49.77 49.81 50.11 50.35
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(a) Comparison between obtained ISLP (dB) of periodic
correlation functions for different sets of m-sequences,
random, Multi-PeCAN and BiST (L = 2).

(b) Comparison between obtained ISLP (dB) of periodic
correlation functions for different sets of random se-
quences, Multi-PeCAN and BiST (L = 4).

Fig. 7: ISLP (dB) versus sequence length.

VI. CONCLUSION

A computational approach to deal with the problem of set of
phase sequences design with good aperiodic/periodic correla-
tion functions for MIMO radar systems has been addressed in
this paper. A general framework (called BiST) was devised to
tackle the unimodular discrete phase sequence design problem.
The results can be summarized as follows:

• The non-convex and, in general, NP-hard sequence de-
sign problem is handled via a novel two-step iterative
procedure based on the CD method.

• Using the concept of coordinate descent algorithm, some
basic formulations were provided that led to the proposed
algorithm for minimization of a weighted sum of PSL and
ISL of a set of sequences in a MIMO radar system.

• The provided numerical examples confirm that the BiST
is an interesting approach for designing set of binary
(discrete phase) sequences applicable in MIMO radar
systems.

As future research tracks, it might be interesting to account for
the behavior in the Doppler domain of the synthesized code,
i.e., considering the design of a set of discrete phase sequences
with a proper ambiguity function.

(a) Periodic auto-correlation of an obtained sequence via
BiST setting w = 0 (ISL minimization).
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(b) Periodic cross-correlation of an obtained sequence
via BiST setting w = 0 (ISL minimization).

Fig. 8: Correlation values versus lag (k) of the sequences
obtained via BiST when L = 4.

APPENDIX A
PROOF OF LEMMA 1

The L-point DFT of ζdkz is,

FL(ζdkz) =


adkz + cdkz + bdkz

adkz + cdkze
−ȷ 2π

L + bdkze
−ȷ 4π

L

...
adkz + cdkze

−ȷ
2π(L−1)

L + bdkze
−ȷ

4π(L−1)
L


Next, observe that in term of auto-correlation we can write,

rtt,k(ϕt(d))e
−ȷϕt(q) = adkt + cdkte

−ȷϕt(q)

+ bdkte
−2ȷϕt(q), q = 1, . . . , L.

and for the cross-correlation function,

rtl,k(ϕt(d))e
−ȷϕt(q) = adkl + cdkle

−ȷϕt(q), q = 1, . . . , L.

Since |rtt,k(ϕt(d))e
−ȷϕt(h)| = |rtt,k(ϕt(d))| and

|rtl,k(ϕt(d))e
−ȷϕt(h)| = |rtl,k(ϕt(d))| we observe,

|FL(ζdkz)| =
[
|rtz,k (ϕt(1))| , |rtz,k (ϕt(2))| , . . . ,

|rtz,k (ϕt(L))|
]T

, (54)

which proofs νdkz = |DFT(ζdkz)|2.
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