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Abstract

This paper studies a general multi-user wireless powered interference channel (IFC) under the

harvest-then-transmit protocol, where the communication in channel coherence time consists of two

phases, namely wireless energy transfer (WET) and wireless information transfer (WIT). In the first

phase, all energy transmitters (ETs) transmit energy signals to information transmitters (ITs) via col-

laborative waveform design, while in the second phase, each IT transmits an information signal to its

intended ET using the harvested energy in the previous phase. The aim is to jointly design the WET-

WIT time allocation, the (deterministic) transmit signal at the first phase, and the transmit power of

ITs in the second phase to optimize the network throughput. The design problems are non-convex and

hence difficult to solve globally. To deal with them, we propose efficient iterative algorithms based

on alternating projections; then, the majorization-minimization technique is used to tackle the non-

convex sub-problems in each iteration. We also extend the devised design methodology by considering

imperfect channel state information (CSI) and non-linearity in energy harvesting circuit. The proposed

algorithms are locally convergent and can provide high-quality suboptimal solutions to the design

problems. Simulation results show the effectiveness of the proposed algorithms under various setups.
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I. INTRODUCTION

One of the major challenges in wireless networks is to prolong the lifetime of the conventional

networks which are powered by finite-capacity batteries. The network lifetime can be extended by

replacing/recharging the batteries; however, it might be expensive and even impossible especially

in large-scale wireless network (e.g., wireless sensor networks) [1]. Therefore, energy harvesting

(EH) technologies have been considered as promising techniques to deal with this difficulty. The

EH technologies are more user friendly/cost effective because they waive the need for manual

battery charging/replacement.

The efficiency of the traditional and natural EH sources (such as solar, thermal, vibrational

sources, etc.) highly depend upon time, location and the conditions of the environments. On the

other hand, radio frequency (RF) enabled wireless energy transfer (WET) technology is a much

more controllable and cost-efficient approach to prolong the lifetime of wireless networks [1]–

[3]. This technology provides wireless devices with continuous (harvested) energy from received

RF signal instead of using conventional batteries. In this case, many practical advantages can

be achieved including long operating range, simple and small harvester circuits, low production

cost, and efficient energy multicasting [1]. Indeed, due to the accumulative nature of EH, the

interference signals received by an energy harvester can be a useful energy source in a wireless

communication network.

A. Related Works

In the literature, there are two lines of research for WET-based communications: wireless

powered communication network (WPCN) and simultaneous wireless information and power

transfer (SWIPT). In WPCNs, wireless devices are powered by dedicated WET in the downlink

in order to transfer information in the uplink; whereas in SWIPTs, a dual use of RF signals is

considered for simultaneous WET and wireless information transfer (WIT) [4]. The design of

WPCNs and SWIPTs for different setups has been addressed in numerous works (e.g., [5]–[16]).

Particularly, in [5], a harvest-then-transmit protocol was proposed for a multi-user WPCN, where

users first harvest energy from RF signals which is broadcasted by a single-antenna hybrid access

point (HAP) in the downlink. Then, they transmit independent information to the HAP in the

uplink via time-division-multiple-access (TDMA) using the harvested energy. In this work, the

downlink WET time slot and uplink information transmission time slots for all users have been

jointly optimized to maximize the network throughput. The authors in [6] have extended [5] to
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a multi-antenna WPCN scenario, where a multi-antenna HAP enables the uplink transmission

via space-division-multiple-access. The reference [12] considered interference channel (IFC)

under SWIPT setting; the work in [13] proposed collaborative energy beamforming (EB) with

distributed single-antenna transmitters for SWIPT under an IFC setup.

Note that there are also prior works in the literature that focus on the waveform design in

wireless power transfer (WPT) and SWIPT to maximize the amount of harvested power and thus

enhance the WPT efficiency [17]–[19]. For example, the authors in [17] considered the optimum

multi-sine waveform design for WPT systems to maximize the output current of the energy

receiver circuit. Note that in the the above works, the amount of harvested energy is random due

to the randomness of the energy/information signals; this randomness leads to an uncertainty of

the instantaneous harvested energy. This issue can be resolved by assuming deterministic energy

signals in WPCN (to be considered in this paper). Imperfect channel state information (CSI)

has been taken into account in [20]–[23] for SWIPT and WPCN. In [23], the authors studied a

robust resource allocation in a TDMA-based MIMO-WPCN with a non-linear EH model. The

non-linearity has also been considered in [19] and [24] for SWIPT.

B. Contributions

In this paper, we consider an IFC adopting the harvest-then-transmit protocol with multiple

transmit-receive pairs. Similar to conventional IFC, information transmitters (ITs) transmit their

independent information signals to their intended receivers; however, the difference lies in that

we consider ITs have no conventional energy supplies. Therefore, they harvest the energy from

information receivers (IRs) in advance. Specifically , there are two phases in this setup. In the

first phase, all IRs act as energy transmitters (ETs) and transmit deterministic energy signals1

with collaborative waveform design. In the second phase, each energy receiver (ER) transmits

its own information signal to its intended IR using the harvested energy in the previous phase

and acts as an IT2. The main contributions of this work are summarized as follows:

1We consider deterministic energy signals for energy transmission in phase 1 (see [19] for a similar assumption). By doing

so, the amount of the harvested energy is not random and can be reliably used for WIT in the second phase. On the other hand,

when using random energy signals, the interfering signals may be combined destructively/constructively at the energy receivers

in the first phase, leading to considerable instantaneous variations of the harvested energy.

2Note that, an example of the considered scenario is the case with one HAP (ET/IR) that serves a single tier of users (ER/IT).
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• We consider a K-link WPCN where all devices work in the same frequency band, i.e., the

uplink WIT can be modeled as an IFC . We also extend the work by considering imperfect

CSI and non-linearity in EH circuit.

• We aim to optimize network throughputs in both sum and max-min senses. The resulted

design problems are non-convex and hence, hard to solve. Therefore, we devise a method

based on alternating projections in order to solve the problems suboptimally but efficiently.

The resulted subproblems are still non-convex and thus, we resort to the majorization-

minimization technique to handle them efficiently.

• In addition to designing power control in the second phase and the time division parameter,

we also consider the waveform design methodology to design the deterministic transmit

signal in the energy transmission phase (i.e., energy waveform).

C. Organization

The rest of this paper is organized as follows. In Section II, we present the IFC with harvest-

then-transmit protocol and the problem formulation. In Section III, the sum throughput maxi-

mization problem is studied and the proposed method for solving it is presented. In Section IV,

we formulate the max-min throughput optimization problem and propose an algorithm to solve

it. Numerical results are provided in Section VI and finally the conclusions are drawn in Section

VII.

Notation: Bold lowercase letters and bold uppercase letters are used for vectors and matrices

respectively. IN represents the identity matrix. We denote vector/matrix transpose by (·)T , the

Hermitian by (·)H and the complex conjugate by (·)∗. Notations ∇f(x) and ∇2f(x) denote the

gradient and the Hessian of the twice-differentiable function f(x), respectively. ℜ{x} represents

the real part of a complex number x and arg(x) denotes its phase argument. The notation λmax(·)
indicates the maximum (principal) eigenvalue of a matrix. The l2-norm of a vector x is denoted

by ‖x‖2. tr{·} denotes the trace of a square matrix and E{·} stands for the statistical expectation.

Finally, the notation A � 0 implies that the matrix A is positive semidefinite.

II. SYSTEM MODEL

We consider a wireless powered K-user IFC with single-antenna nodes in which ITs have no

conventional energy supplies (e.g., fixed batteries) and thus they need to replenish energy from

the signals sent by the ETs in the network.
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ET1

...

ETk

...

ETK

ER1

...

ERk

...

ERK

IR1

...

IRk

...

IRK
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...

ITk

...
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phase 1: energy transfer

0 < t < τ

phase 2: information transfer

τ < t < T

energy flow

information flow

interference

Fig. 1. A K-link IFC with harvest-then-transmit protocol. In phase 1, all ETs transmit their energy signals to all ERs with

collaboration. Due to the accumulative nature of EH, each ER harvests energy from all received energy signals. In phase 2, all

ITs send their information signals to their intended IRs using the harvested energy in the previous phase simultaneously (where

an ER in phase 1 act as an IT in phase 2). Note that in phase 2, the information signals generated by other ITs cause co-channel

interference that is harmful for the WIT.

In the sequel, we adopt the harvest-then-transmit protocol proposed in [5], as shown in Fig. 1.

In each block of duration T , during the first phase (i.e. time slot t ∈ [0, τ ]), all ETs collaboratively

broadcast energy signals to all ITs simultaneously. Hence, in phase 1, ITs act as ERs. In phase 2

(i.e. time slot t ∈ [τ, T ]), ITs transmit their own information to the associated IRs simultaneously.

This is performed using the harvested energy during phase 1. Note that, an IR in phase 2 is also

an ET in phase 1. As mentioned earlier, in the considered model, an ET/IR can be a HAP that

serves a single-tier of users (ER/IT) (see also [13] and [14] for similar scenarios).

The transmit power of the kth ET (i.e., ETk) for k = 1, ...,K is limited by the maximum

power budget which is denoted by pmax,k. The channel from the kth ET to the jth IT and

the corresponding reverse channel are denoted by (complex) random variables hj,k and gj,k,

respectively, with gains |hj,k|2 and |gj,k|2. Let the deterministic transmitted (baseband) signal of

the kth ET at phase 1 be xk and define the corresponding transmit signal x = [x1, x2, ..., xK]
T
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as the energy waveform1.

As we adopt collaborative energy waveform design, the received signal at the kth ER at this

phase is given by

yk = hH
k x, ∀k, (1)

with hk , [h∗
k,1, h

∗
k,2, ..., h

∗
k,K]

T
. Note that according to the IFC model, the kth ER can harvest the

wireless energy from not only the kth ET but also other ETs’ signals. Therefore, given channel

coefficient hk, the amount of harvested energy by the kth ER is given by

Ek(x) = µkτ |yk|2 = µkτh
H
k xx

Hhk, ∀k, (2)

with µk being a constant associated with the linear EH circuit assumed. After the ERs replenish

their energy during phase 1, they transmit (independent) information to their associated receivers

(IRs) in phase 2. In fact, the energy of the information signal in this WIT phase is limited by the

sum of the harvested energy in the WET phase of the current period and remaining energy from

previous periods (Ek(x) +E0,k). Precisely, the transmit power for the information transmission

at phase 2 (pk) has a constraint as follows

pck + εk(T − τ)pk ≤ Ek(x) + E0,k, ∀k, (3)

where pck is the constant related to circuit power consumption, εk stands for power amplifier

efficiency with 0 < (εk) ≤ 1, E0,k is the remaining energy of the previous period, and pk is the

design parameter to be optimized. In the following, without loss of generality, we consider a

normalized time duration T = 1.

The received signal wk at the kth IR in phase 2 can be expressed as

wk = gk,k
√
pksk +

K∑

j=1,j 6=k

gj,k
√
pjsj + nk, ∀k, (4)

where sk is the information symbol from the kth transmitter at phase 2 and nk denotes the

zero-mean additive white Gaussian noise (AWGN) at the kth IR with variance σ2
k. Consequently,

assuming availability of perfect CSI [5], the signal-to-interference-plus-noise ratio (SINR) asso-

ciated with the kth ET-IT pair is given by

γk(p) =
|gk,k|2pk∑K

j=1,j 6=k |gj,k|2pj + σ2
k

, ∀k, (5)

1Herein, an option for the continuous-time transmit signal of the kth ET, i.e. sk(t), is sk(t) = ℜ{xkexp(jωct)}. However,

multi-carrier deterministic signals, modulated signals with Circularly Symmetric Complex Gaussian (CSCG) inputs or flash-based

signaling can lead to higher harvested power (see [17], [19], [25]).
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with p , [p1, p2, ..., pK]
T . In light of the above expression for the SINR, the achievable through-

put bits/second/Hertz (bps/Hz) associated with the kth ET-IT pair (at phase 2) can be expressed

as

Rk(p, τ) = (1− τ)log2(1 + γk(p)), ∀k. (6)

In the next sections, we consider different throughput optimization problems with respect to

(w.r.t.) the WET-WIT time allocation (i.e., the parameter τ ), the transmit waveform in phase

1 (i.e., x), and the transmit power in phase 2 (i.e., p) based on the above system model.

Specifically, we deal with the sum- and min-throughput maximization problems in Sections

III and IV, respectively.

III. SUM THROUGHPUT MAXIMIZATION

In this section, we aim to maximize the sum throughput of the network, i.e.,
∑K

k=1Rk(p, τ).

According to (6), the sum throughput maximization problem can be cast as

max
x,p,τ

(1− τ)
K∑

k=1

log2(1 + γk(p)) (7)

s. t. C1 : 0 ≤ τ ≤ 1,

C2 : |xk|2 ≤ pmax,k, ∀k,

C3 : pck + εk(1− τ)pk ≤ Ek(x) + E0,k, ∀k,

C4 : Ek(x) + E0,k ≤ Emax,k, ∀k.

Note that constraint C4 states that each ER has a finite capacity for energy storage Emax,k [26]–

[28]. Using (2) and (5), this problem can be rewritten as

max
x,p,τ

(1− τ)

K∑

k=1

log2

(
1 +

|gk,k|2pk∑K

j=1,k 6=j |gj,k|2pj + σ2
k

)
(8)

s. t. C1,C2,

C3 : pck + εk(1− τ)pk ≤ µkτx
Hhkh

H
k x+ E0,k, ∀k,

C4 : µkτx
Hhkh

H
k x+ E0,k ≤ Emax,k, ∀k.

The problem in (8) is non-convex due to the coupled design variables in the objective function

and the constraint set. In the sequel, we employ the alternating projections approach [29] by

partitioning [x,p] and τ to deal with this problem. More specifically, we first consider the

problem w.r.t. x and p for fixed τ and then w.r.t. τ for fixed x and p; the procedure continues
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till a stop criterion is satisfied (See Remark 1). As the aforementioned optimizations with certain

fixed variables are still non-convex, we need to tackle them via the majorization-minimization

technique.

A. Optimizing x and p for fixed τ

Let

ak , |gk,k|2, ∀k, bk,j , |gj,k|2, ∀k 6= j,

and note that the SINR associated with the kth pair in (5) can be rewritten as the following

expression

γk(p) =
aT
kp

bT
kp+ σ2

k

, (9)

with ak , akek where ek is the kth standard vector and bk , [bk,1, bk,2, ..., bk,k−1, 0, bk,k+1, ..., bk,K]
T .

The problem in (8) for fixed τ reduces to the following optimization problem:

max
x,p

(1− τ)

K∑

k=1

log2

(
1 +

aT
kp

bT
kp+ σ2

k

)
(10)

s. t. C2,C3,C4.

This problem is non-convex w.r.t. [x,p] due to the non-concave objective function and the non-

convex constraint C3. Therefore, we resort to the majorization-minimization (MaMi) technique1

to deal with the problem. MaMi is an iterative method that can be used to obtain a suboptimal

solution to any non-convex optimization problem in the general form of :

P0 :





max
x̃

f(x̃)

s.t. g̃(x̃) ≤ 0.
(11)

where, f(x̃) and g̃(x̃) can be non-concave and non-convex functions, respectively. To apply

MaMi to P0, we should obtain two functions at the ith iteration, namely h(i)(x̃) and q(i)(x̃),

such that q(i)(x̃) minorizes f(x̃), i.e.,

f(x̃) ≥ q(i)(x̃), ∀x̃, (12)

f(x̃(i−1)) = q(i)(x̃(i−1)),

1Also known as the minorization-maximization (MM) technique.
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and h(i)(x̃) majorizes g̃(x̃), i.e.,

h(i)(x̃) ≥ g̃(x̃), ∀x̃, (13)

h(i)(x̃(i−1)) = g̃(x̃(i−1)),

where x̃(i−1) is the value of x̃ at the (i−1)th iteration. Next, the following optimization problem

is solved at the ith iteration (which is simpler than the original problem):

Pi :





max
x̃

q(i)(x̃)

s.t. h(i)(x̃) ≤ 0.
(14)

Let {qk}k , {ak + bk}k and note that the optimization in (10) can be recast as

max
x,p

(1− τ)

K∑

k=1

log2

(
qT
kp+ σ2

k

bT
kp+ σ2

k

)
(15)

s. t. C2,C3,C4.

The problem in (15) can be equivalently expressed as the following problem

max
x,p

(1− τ)

K∑

k=1

{
log2(q

T
kp+ σ2

k)− log2(b
T
kp+ σ2

k)
}

(16)

s. t. C2,C3,C4.

Next, let f1,k(p) , log2(q
T
kp+σ2

k) and f2,k(p) , −log2(b
T
kp+σ2

k). Now, f1,k(p) and f2,k(p) are

concave and convex functions of p, respectively. Note that for the problem in (16), the objective

function and the constraint C3 are non-concave/convex w.r.t. p and x, respectively. Accordingly,

we start by dealing with the non-concave objective function in (16) via MaMi. To apply MaMi

to the objective in (16), we should minorize
{∑K

k=1 {f1,k(p) + f2,k(p)}
}

. To this end, we keep

the function f1,k(p) and minorize f2,k(p), for every k. To obtain the minorizer, we observe the

following inequality (which is concluded from the concavity of the function log(t) for t ∈ R+):

log(t) ≤ log(t0) +
1

t0
(t− t0). (17)

Next, note that setting t , bT
k p+ σ2

k leads to the below minorizer for f2(p):

− log2(b
T
kp+ σ2

k) ≥ −log2(b
T
kp0 + σ2

k)−
1

bT
kp0 + σ2

k

(bT
kp− bT

kp0). (18)

By substituting the above minorizer in the objective of (16) and neglecting the constant terms,

the following objective is obtained at the ith iteration of the MaMi technique:

max
x,p

(1− τ)

K∑

k=1

{
log2(q

T
kp+ σ2

k) + (b̂
(i)
k )Tp

}
, (19)
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where

b̂
(i)
k , − bk

bT
k p

(i−1) + σ2
k

. (20)

Next, we consider the non-convex constraint in C3. Note that C3 implies:

pck + εk(1− τ)pk ≤ µkτx
Hhkh

H
k x+ E0,k. (21)

This constraint can be deal with via MaMi technique as well. Indeed, we consider the following

inequality for a given matrix T � 0 and x0:

xHTx ≥ xH
0 Tx0 + 2ℜ

{
xH
0 T (x− x0)

}
. (22)

Using the fact that hkh
H
k � 0, the right-hand side (RHS) of the constraint C3 can be substituted

at the ith iteration of MaMi by

µkτ
((

x(i−1)
)H

hkh
H
k x

(i−1) + 2ℜ
{(

hkh
H
k x

(i−1)
)H (

x− x(i−1)
)})

+ E0,k.

Note that the above equation and the minorizer in (18) hold for every k. Consequently, the

problem in (16) can be handled at the ith MaMi iteration by the following problem iteratively:

max
x,p

(1− τ)

K∑

k=1

{
log2(q

T
k p+ σ2

k) + (b̂
(i)
k )Tp

}
(23)

s. t. C3 : pck + εk(1− τ)pk ≤ µkτ(
(
x(i−1)

)H
hkh

H
k x

(i−1)

+2ℜ
{(

hkh
H
k x

(i−1)
)H (

x− x(i−1)
)}

) + E0,k,

C2,C4.

The problem in (23) is a convex optimization and can be solved efficiently by e.g., interior

point methods [30].

B. Optimizing τ for fixed x and p

The problem in (8) for fixed energy waveform in phase 1 (x) and transmit powers in phase

2 (p) boils down to

max
τ

(1− τ) (24)

s. t. C1 : 0 ≤ τ ≤ 1

C3 : ζ1,k ≤ τ, ∀k,

C4 : τ ≤ ζ2,k, ∀k,
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TABLE I

THE PROPOSED METHOD FOR SUM THROUGHPUT MAXIMIZATION IN K-USER INTERFERENCE CHANNELS

Step 0: Initialize τ with a random value in [0, 1].

Step 1: Compute x
(κ) and p

(κ) by solving the problem in (10).

Step 1-1: Initialize p ∈ R
K; set i = 0.

Step 1-2: Solve the convex problem in (23) to obtain the

most recent version of x and p.

Step 1-3: Update the parameters in optimization (23) and set

i = i+ 1.

Step 1-4: Repeat steps 1-2 and 1-3 till the stop criterion

is satisfied.

Step 2: Compute τ (κ) by solving the problem in (24) via the

closed-form solution in (25).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is

satisfied, e.g. |g(κ+1) − g(κ)| ≤ ξ (where g denotes the objective

function of the problem (8)) for some ξ > 0.

where ζ1,k ,
pck+εkpk−E0,k

εkpk+µkx
Hhkh

H
k
x

, ζ2,k ,
Emax,k−E0,k

µkx
Hhkh

H
k
x

. Therefore, the closed-form solution for τ can

be expressed as1

τopt = max{0, ζ1,k}, ∀k. (25)

Table I summarizes the steps of the proposed method for sum throughput maximization in

a K-user IFC. The devised method consists of outer iterations which are associated with the

employed alternating projections approach. At each outer iteration (denoted by superscript κ),

for fixed τ , the convex problem in (23) is solved according to the MaMi iterations i.e., inner

iterations (denoted by superscript i). Then, for a fixed x and p, the convex optimization (24) is

handled via the closed-form solution.

Remark 1 (Convergence of the proposed method): Note that the sequence of objective values

of the problem in (7) have an ascent property when tackled by the proposed method. More

precisely, let g(p(κ),x(κ), τ (κ)) denote the aforementioned objective at the κth iteration. We can

write

g
(
p(κ+1),x(κ+1), τ (κ+1)

)
≥ g

(
p(κ+1),x(κ+1), τ (κ)

)
≥ g

(
p(κ+1),x(κ), τ (κ)

)
≥ g

(
p(κ),x(κ), τ (κ)

)
,

1For the feasibility of this problem we should have ζ1,k ≤ 1,∀k, ζ2,k ≥ 0, ∀k, and ζ1,k ≥ ζ2,k,∀k.
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where the inequalities above hold due to performing maximization w.r.t. p, x, and τ , respectively.

This property along with the fact that the sum throughput (i.e., g(p,x, τ)) is bounded above

leads to a convergence of the sequence of the objective values. We herein remark on the fact

that maximization of g(p,x, τ) w.r.t p, x, and τ is dealt with via an iterative approach based on

the MaMi technique (inner iterations). The convergence of the inner iterations associated with

this technique is addressed in the next subsection. �

C. Convergence of the iterations associated with MaMi technique

We discussed the convergence of the alternating projections method in Remark 1. Therefore,

to address the convergence of the proposed method, we need to take into account the inner

iteration associated with MaMi technique. Indeed, consider the original problem P0 in (11) and

the problem Pi in (14) resulting from applying MaMi technique at the ith iteration.

First, we show that all iterations of the proposed method is feasible. Let us start with initial

point x̃(0), i.e. g̃(x̃(0)) ≤ 0. We should deal with the first iteration by constructing P1. Since

according to (13), h(1)(x̃(0)) = g̃(x̃(0)) ≤ 0, x̃(0) is also feasible for P1 meaning that we can

initialize the iterative procedure by a feasible point to the original problem P0. Let x̃(i) be a

solution to Pi. Thus, h(i)(x̃(i)) ≤ 0. Also, using (13), we have:

g̃(x̃(i)) ≤ h(i)(x̃(i)) ≤ 0. (26)

Noting that h(i+1)(x̃(i)) = g̃(x̃(i)) and using (26), we can write the following inequality

h(i+1)(x̃(i)) = g̃(x̃(i)) ≤ h(i)(x̃(i)) ≤ 0. (27)

Consequently, the point x̃(i) is also feasible for the problem Pi+1 and as a result, the iterations

are all feasible. Next, we show that the sequence of objective values is convergent. Note that

we can write
minorizer property︷ ︸︸ ︷

f (i+1)(x̃) = q(i+1)(x̃) ≥
minorizer property︷ ︸︸ ︷

q(i)(x̃) ≥ f (i)(x̃) .
︸ ︷︷ ︸

maximization step

(28)

The inequality above holds due to maximization step and note that the point x̃(i) is a feasible

point for Pi+1 (see (27)), but in general, the optimal solution of Pi+1, i.e. x̃(i+1) has larger

objective function value when compared to this feasible point. Using (28) and noting that the

objective function f(.) is upper-bounded, we conclude that the sequence of objective values

converges.
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IV. ACHIEVING FAIRNESS IN THE NETWORK: MAXMIN THROUGHPUT OPTIMIZATION

In Section III, the sum throughput of the network was maximized by judicious selection of the

allocated WET-WIT time slot τ , the energy waveform in phase 1 (x), and the transmit powers

p in phase 2. However, there might be user pairs suffering from a low throughput while some

others have a high throughput for their communications. To improve the throughput of the pairs

with low throughput and hence achieve a fairness in the network, in this section, we aim to

improve the throughput of the worst user pair (i.e., the pair associated with min
k

Rk(p, τ)) by

optimizing the energy waveform in first phase and the transmit powers in second phase as well

as the allocated time slot τ . Therefore, we cast the following max-min throughput optimization

problem

max
x,p,τ

min
1≤k≤K

(1− τ)log2 (1 + γk(p)) (29)

s. t. C1,C2,C3,C4,

where γk(p) is defined in (9).

Note that the problem in (29) is non-convex due to the coupled design variables in the objective

function and the constraint set. To tackle this design problem, similar to the sum throughput

maximization, we employ an alternating projections approach with the partitioning similar to

that in Section III. Again, the resulted problems are non-convex and we aim to devise efficient

algorithms to solve them suboptimally.

A. Optimizing x and p in max-min problem for fixed τ

For fixed τ , the problem (29) boils down to the following problem:

max
x,p

min
1≤k≤K

(1− τ)log2

(
qT
kp+ σ2

k

bT
k p+ σ2

k

)
(30)

s. t. C2,C3,C4,

where qk and bk are given in Section III-A.

The problem above can be equivalently rewritten with an auxiliary variable α as

max
x,p,α

α (31)

s. t. C2,C3,C4,

C5 : (1− τ)
{

log2(q
T
kp+ σ2

k)− log2(b
T
kp+ σ2

k)
}
≥ α, ∀k.
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Let f̃1,k(p) , log2(q
T
kp + σ2

k) and f̃2,k(p) , −log2(b
T
kp + σ2

k). Next, observe that f̃1,k(p)

and f̃2,k(p) are concave and convex functions w.r.t. p, respectively for all k. Consequently, the

constraint C5 in the (31), i.e., f̃1,k(p) + f̃2,k(p) ≥ α, ∀ k is non-convex. Note that the constraint

C3 is also non-convex but can be dealt with similarly as in Section III-A, denoted by Ĉ
(i)

3 in

the sequel. To deal with the non-convexity of C5, we apply MaMi technique again, i.e.,. by

replacing the convex function f̃2,k with a concave (or linear) lower bound iteratively (for each k)

such that the resulted constraint set becomes a convex set at each iteration (see (11)- (14)). Due

to the fact that the function f̃2,k(p) is convex w.r.t. p, it can be minorized using its supporting

hyperplane. This minorizer can be obtained by employing the aforementioned inequality in (17)

for x , bT
k p+ σ2

k. This leads to

−log2(b
T
kp+ σ2

k) ≥ −log2(b
T
kp0 + σ2

k) + b̂T
k (p− p0),

where b̂k has been defined in (20). Substituting the above minorizer in lieu of f̃2,k(p) in

the constraint set of the problem in (31) (for each k) and employing Ĉ
(i)

3 lead to the below

optimization at the ith iteration of the MaMi technique,

max
x,p,α

α (32)

s. t. C2, Ĉ
(i)

3 ,C4,

C5 : (1− τ)
{

log2(q
T
kp+ σ2

k)− log2(b
T
k p

(i−1) + σ2
k) + (b̂

(i)
k )T (p− p(i−1))

}
≥ α, ∀k.

Note that the problem in (32) is now a convex optimization and can be solved efficiently via

e.g., interior point methods.

B. Optimizing τ in max-min problem for fixed x and p

For fixed x and p, and using the fact that

min
1≤k≤K

(1− τ)log2

(
qT
kp+ σ2

k

bT
kp+ σ2

k

)
= 1− τ,

the maxmin problem in (29) boils down to the problem in (24) in Section III-B with the closed-

form solution in (25).

The steps of the devised algorithm for max-min throughput optimization are summarized

in Table II. Similar to the sum throughput maximization, the proposed method consists of

outer iterations (denoted by superscript κ) which are associated with the employed alternating

projections approach. At each outer iteration, for fixed τ , the convex problem in (32) is solved
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TABLE II

THE PROPOSED METHOD FOR MAX-MIN THROUGHPUT OPTIMIZATION IN K-USER INTERFERENCE CHANNEL

Step 0: Initialize τ with random values in [0, 1].

Step 1: Compute α(κ), x(κ), and p
(κ) by solving the problem in

(31):

Step 1-1: Initialize p ∈ R
K and; set i = 0.

Step 1-2: Solve the problem in (32) to obtain the most

recent version of α, x, and p.

Step 1-3: Update the parameters in optimization (32) and set

i = i+ 1.

Step 1-4: Repeat steps 1-2 and 1-3 till the stop criterion

is satisfied.

Step 2: Compute τ (κ) via the closed-form solution in (25):

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion

is satisfied, e.g. |g
(κ+1)
w − g

(κ)
w | ≤ ξw (where gw denotes the

objective function of the problem (29)) for some ξw > 0.
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Fig. 2. A comparison between the linear and non-linear EH models with practical data from Fig. 7 of [31].

according to the MaMi iterations i.e., inner iterations (denoted by superscript i). Then, for a

fixed x and p, the optimal value of τ is obtained via the closed-form solution in (25).
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V. FURTHER NOTES AND DISCUSSIONS

A. Non-linearity of EH circuit

In the previous sections, we considered the linear model for EH circuits given in (2). How-

ever, in practice, there is a non-linear characteristic between input and output powers of the

EH circuits, especially in the saturation region. For example, as shown in Fig. 2, there is a

considerable difference between linear and non-linear curves in the saturation region, whereas

the aforementioned models have minor differences in the linear region. Herein, we consider the

non-linear EH model for ERs in the first phase. In this case, a modified version of (2) for the

harvested energy by the kth ER for non-linear model can be expressed as [23]:

Enl
k (x) = τ

Nk

1+exp(−ãk(plk(x)−b̃k))
−NkΩk

1− Ωk

, Ωk =
1

1 + exp
(
ãk b̃k

) , 1 ≤ k ≤ K, (33)

where, plk(x) = xHhkh
H
k x, Nk is the maximum power that each ER can harvest and ãk as

well as b̃k are the factors for non-idealities of the EH circuit. As an example, the values of the

parameters Nk = 48.86 µW , ãk = 26515.46 and b̃k = −29.81 × 10−6 of the model in (33) can

be obtained via curve fitting tools with the practical data from [31] with the high R-squared

value of R2 = 0.99811. Therefore, the constraints C3 and C4 of design problems (7) and (29)

can be reformulated as

Cnl
3 : pck + εk(1− τ)pk ≤ Enl

k (x) + E0,k, ∀k,

Cnl
4 : Enl

k (x) + E0,k ≤ Emax,k, ∀k.

Note that Enl
k (x) is a non-decreasing concave function w.r.t. plk(x) (for typical values of Nk, ãk

and b̃k) and plk(x) is a convex function w.r.t. x; therefore, Enl
k (x) is neither convex nor concave

w.r.t. x. Consequently, both constraints in Cnl
3 and Cnl

4 represent non-convex sets. To deal with

such non-convex sets, we observe that Enl
k (x) can be rewritten as a sum of a convex and a

concave function for sufficiently large2 β as stated below [33, Theorem 1]

Enl
k (x) = Enl

k (x) +
1

2
βxHx

︸ ︷︷ ︸
convex

−1

2
βxHx

︸ ︷︷ ︸
concave

, ∀k. (34)

1Note that the curve fitting can also be performed in log-log scale to obtain more accurate results in low power regimes (see

[32] for details).

2See Appendix A for a selection of β.
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Now, for the non-convex constraint Cnl
3 , we can keep the concave part in (34) and minorize the

convex part to obtain a convex constraint. For Cnl
4 , we may keep the convex part in (34) and

majorize the concave part using the MaMi technique. The aforementioned convex/concave parts

can be minorized/majorized using the definition of the convexity, as stated below

Cnl
3 : pck+εk(1−τ)pk ≤ Enl

k (x(i−1))+
1

2
β(x(i−1))Hx(i−1)+ℜ

{
u
(i)
k

(
x− x(i−1)

)}
−1

2
βxHx+E0,k,

Cnl
4 : Enl

k (x) +
1

2
βxHx− 1

2
β
(
(x(i−1))Hx(i−1) + 2ℜ

{
(x(i−1))H

(
x− x(i−1)

)} )
+ E0,k ≤ Emax,k,

where, u
(i)
k can be expressed as

u
(i)
k =

2τNkãkexp
(
−ãk

(
(x(i−1))Hhkh

H
k x

(i−1) − b̃k

))

(1− Ωk)
(
1 + exp

(
−ãk

(
(x(i−1))Hhkh

H
k x

(i−1) − b̃k

)))2
(
x(i−1)

)H
hkh

H
k +β

(
x(i−1)

)H
.

B. Effect of imperfect CSI

In practice, the perfect CSI is not available and thus there might be uncertainties w.r.t. channel

coefficients hj,k and gj,k. Therefore, in this subsection, we consider imperfect CSI for optimizing

the design parameters. The imperfect CSI between ET-IT pairs using the linear minimum mean

squared error (LMMSE) estimator can be modeled as [34]

hk,j = ĥk,j +∆hk,j, (35)

gk,j = ĝk,j +∆gk,j,

where ĥk,j and ĝk,j are the estimates of channel coefficients hk,j and gk,j, respectively, while

∆hk,j and ∆gk,j are the channel estimation errors. It is assumed that ∆hk,j as well as ∆gk,j are

independent zero-mean complex Gaussian random variables with variance σ2
h,∆ and σ2

g,∆, and

also are uncorrelated with ĥk,j and ĝk,j, respectively. The relationships between the variances of

the channel coefficients σ2
h and σ2

g , the variances of the estimated channel coefficients σ2
ĥ

and

σ2
ĝ , and the variances of the channel estimation errors can be expressed as

σ2
h,∆ = (1− ρh

2)σ2
h, σ2

ĥ
= ρh

2σ2
h, (36)

σ2
g,∆ = (1− ρg

2)σ2
g , σ2

ĝ = ρg
2σ2

g ,
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where the parameters ρg, ρh ∈ [0, 1] indicate the estimation accuracy. According to (35) and

(36), the amount of harvested energy in average sense can be computed using the fact that the

channel estimate ĥk is available at the begining of each block of duration T as [35, eq. (23)]

Eim
k = µkτE∆hk

{ykyHk |ĥk} = µkτE∆hk
{hH

k xx
Hhk|ĥk} = µkτ tr

{
E∆hk

{hH
k xx

Hhk|ĥk}
}

(37)

= µkτ tr
{
E∆hk

{
hkh

H
k |ĥk

}
xxH

}
= µkτx

H
E∆hk

{
(ĥk +∆hk)(ĥ

H
k +∆hH

k )|ĥk

}
x

= µkτx
H
(
ĥkĥ

H
k + E∆hk

{
∆hk∆hH

k

})
x = µkτx

H
(
ĥkĥ

H
k + σ2

h,∆IK

)
x,

where ĥk , [ĥ∗
k,1, ĥ

∗
k,2, ..., ĥ

∗
k,K]

T
and ∆hk , [∆h∗

k,1,∆h∗
k,2, ...,∆h∗

k,K]
T

. The SINR of the kth

ET-IT pair is then given by

γim
k (p) =

|ĝk,k|2pk∑K

j=1,k 6=j |ĝj,k|2pj + σ2
g,∆

∑K

j=1 pj + σ2
k

. (38)

Therefore, the throughput of the kth ET-IT pair and also constraints C3 and C4 of design problems

(7) and (29) can be reformulated as

Rim
k (p, τ) = (1− τ)log2

(
1 + γim

k (p)
)
= (1− τ)log2

(
1 +

(aim
k )

T
p

(bim
k )

T
p+ σ2

k

)
, (39)

Cim
3 : pck + εk(1− τ)pk ≤ Eim

k (x) + E0,k, ∀k,

Cim
4 : Eim

k (x) + E0,k ≤ Emax,k, ∀k.

respectively, where aim
k , aimk ek and bim

k , [bimk,1, b
im
k,2, ..., b

im
k,K]

T with

aimk , |ĝk,k|2, bimk,j ,




|ĝj,k|2 + σ2

g,∆, k 6= j,

σ2
g,∆, k = j.

Note that the optimization problems in (8) and (29) can be recast and solved in case of imperfect

CSI, similar to the procedures in Table I and Table II with the above expressions.

VI. NUMERICAL EXAMPLES

In this section, the performance of the proposed method is evaluated via Monte-Carlo simu-

lations. Without loss of generality, we assume that the channel reciprocity holds for the phase 1

and phase 2, i.e., hi,j = gi,j, i, j = 1, ...,K [5]. Channel coefficients {hi,j} are modeled according

to Rician fading in which the complex channel between jth ET and ith IT is given by [13]

hi,j =
[√ M

M + 1
hLoS +

√
1

M + 1
hNLoS
i,j

]√
c0(

di,j
d0

)−v, ∀i, j, (40)

February 27, 2019 DRAFT



19

ET1

...

ETk

...

d 1,k

d
K
,k

dk,k

ETK

ld

IT1

...

ITk

...

ITK

Fig. 3. A K-link symmetric IFC.

where hLoS is the line-of-sight (LoS) deterministic component with |hLoS|2 = 1, hNLoS
i,j is a

circularly symmetric complex Gaussian random variable with zero mean and unit variance

representing non-LoS Rayleigh fading component, M denotes the Rician factor, c0 is a constant

attenuation due to the path-loss at a reference distance d0, v is a path loss exponent and di,j

is the distance between the jth ET and the ith IT. Throughout the simulation, we consider

M = 3, c0 = −20 dB, d0 = 1 meter (m), v = 3, and σ2
k = −70 dBm, ∀k [13]. We consider both

symmetric and asymmetric scenarios. In the symmetric scenario (shown in Fig. 3), we limit all

pairs in ld = 50 (m) such that the distance between any pair and its adjacent pair is equal to

ld
K−1

unless otherwise explicitly stated. Also, we set pmax,k = 32 dBm, ∀k, pck = −23 dBm, ∀k,

εk = 1, ∀k, the estimation quality ρg = ρh = ρ = 0.9, and dk,k = 10 (m), ∀k. We further assume

the number of pairs K = 5, unless otherwise explicitly stated. In addition, we set E0,k = 0 J,

∀k, and Emax,k = 50 µJ, ∀k [26]. We also investigate an asymmetric scenario for evaluating

the performance of the proposed system under more general condition as shown in Fig. 11 (in

Section VI-F). The convex optimization problems are solved using CVX package [36].

A. Convergence of proposed algorithms

The convergence of the proposed algorithm for sum throughput optimization is shown in Fig.

4.a via considering the values of the objective function in (7) versus outer iterations number (see

Table I). It is observed that the objective values have a monotonic ascent property, as expected.

In addition, the sum throughput is monotonically increasing w.r.t. the maximum transmit power

pmax in the first phase until around pmax = 39 dBm. After this value, increasing pmax does not

increase the sum throughput; this can be explained using the fact that each ER has a finite
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Fig. 4. The values of the objective function versus number of iterations for K = 5: (a) sum throughput (the objective in

(7)) in the sum throughput optimization problem, (b) minimum throughput (the objective in (29)) in the max-min throughput

optimization problem.

capacity energy storage Emax. Fig. 4.b illustrates the objective values for the maxmin problem

in (29). Behaviors similar to those of the Fig. 4.a can be seen. In this example, for the max-min

problem, the amount of power in which saturation occurs (pmax = 36 dBm) is less than that of

the sum throughput problem; because in the max-min problem, the optimal WET time τopt is

greater (to be shown in the next subsection).

B. The sum versus minimum throughput maximization

Next, we plot the sum and the minimum throughput in Fig 5. From this figure, it is observed

that in the sum throughput maximization, the values of the maximum and minimum throughput

are equal to R5 = 2.42 bps/Hz and R3 = 0.21 bps/Hz, respectively, which illustrates and

emphasizes the unfair throughput allocation between pairs. Note that in the max-min design,

we have R1 ≃ ... ≃ R5 ≃ 0.63 bps/Hz to ensure the fairness among all pairs. However, the

sum throughput of all pairs are equal to 6.63 bps/Hz and 3.15 bps/Hz for the sum and max-

min designs, respectively. This shows that in the max-min throughput optimization, the sum

throughput compromised for achieving the fairness.

Fig. 6 illustrates transmit powers in phase 2 in both design problems. It is observed that the

3rd IT transmits the most power among all ITs in the max-min throughput optimization problem.

Also, as shown in Fig. 3, the 3rd IT is located in the middle of the other pairs; and hence, this IT
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Fig. 5. An illustration of the values of the throughput for each pair in the sum and max-min throughput optimizations.
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Fig. 6. An illustration of transmit powers in phase 2 in the sum and max-min throughput optimizations.

receives the highest level of interference at phase 2. Therefore, in phase 2, the 3rd pair receives

the most (harmful) interference that is generated by other pairs. Moreover, we know that in

the max-min throughput optimization, the throughput allocation among all pairs should be fair.

Consequently, for compensating the high interference level that is received by the 3rd ET, the

3rd IT should transmit a higher level of power in phase 2. We also show the time allocation for

optimal values of x and p. Herein, τopt = 0.22 and τopt = 0.47 for sum and minimum throughput

optimizations, respectively.
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Fig. 7. Throughput values versus number of pairs: (a) sum throughput in the sum throughput maximization, (b) minimum

throughput in the max-min optimization.

C. The improvement due to design of the energy waveform x

In this subsection, we investigate the sum and minimum throughput of pairs versus number of

pairs (K) to illustrate the improvement due to designing the energy waveform x. We set ld = 100

(m) and as mentioned earlier, the distance between any pair and its adjacent pair will be equal

to ld
K−1

. Fig. 7.a and Fig. 7.b illustrate the sum and minimum throughput versus K in sum

throughput maximization and max-min throughput optimization problems, respectively. It can

be seen in both figures that the proposed resource allocation scheme (with the energy waveform

design) achieves higher throughput than the scheme without energy waveform design for both

cases. Note that for the method without joint energy waveform design, only the powers of the

transmit energy signals are optimized, i.e., |xk|2; indeed, in this case the degrees of freedom

for phase arg(xk) are not exploited. Also, Fig. 7.b shows that increasing the number of pairs

decreases the minimum throughput in the max-min throughput optimization problem case. This

behavior can be explained intuitively as follows: limiting a larger number of pairs in ld (m)

results in higher interference level and thus lower minimum throughput. This phenomenon is

also responsible for the saturation of curves in Fig. 7.a for the considered interval of K.

D. Non-linearity of EH circuit

Fig. 8 illustrates the input and output power levels of the EH circuit for linear and non-linear

characteristics. Herein, we consider the results of Fig. 2 for the linear and non-linear models.

Note that the input power range is around 20 µW; and as it can be seen from Fig. 2, the rectifier

February 27, 2019 DRAFT



23

1 2 3 4 5
Index of pairs

0

5

10

15

20

25

30

35

40

p
ow

er
s
(µ
W

)

Average input power
Average  output power (linear EH model)
Average  output power (non-linear EH model)

Fig. 8. An illustration of input and output powers of the EH circuits for linear versus non-linear EH models.

works in the linear region. Therefore, as expected, the behavior and output powers assuming

linear and non-linear models have minor differences. However, if one considers a scenario in

which the rectifier goes to saturation, the corresponding results will be substantially different.

Note also that the input/output powers vary for various channel realizations. Therefore, the results

in Fig. 8 are reported in average sense but this figure also shows the aforementioned variations

(by black signs) that belong to [0.8m̄, 1.2m̄] with m̄ being the average value.

E. Effect of channel estimation error

Further, we investigate the effect of the channel estimation error. The proposed method

considers the channel estimation errors in the design stage and thus can be considered robust

w.r.t. errors. We compare the throughputs of the devised method with those of non-robust

method. The non-robust method herein refers to the case in which estimation errors are not

taken into account in the design stage, i.e., assuming the channel estimates are accurate and

error-free. The throughput comparisons in average sense over 100 random channel realizations

for both sum and minimum throughput maximization are depicted in Fig. 9.a and Fig. 9.b,

respectively. As expected, the sum and minimum throughput values in sum and minimum

throughput designs increase with the estimation quality ρ. In addition, performance gains of

the proposed method over the non-robust method for both sum and minimum throughputs can

be seen. The performance gain is not significant specially for max-min design; however, there
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Fig. 9. Throughputs versus the estimation quality ρ for K = 5: (a) sum throughput in the sum throughput maximization, (b)

minimum throughput in the max-min optimization.
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Fig. 10. The loss ξ(ρ) versus the estimation quality ρ in the max-min throughput optimization.

might be some channel realizations in which adopting the non-robust scheme instead of the

robust one will cause a considerable performance degradation. Therefore, we define the loss

parameter as

ξ(ρ) , 1− Rnr(ρ)

Rr(ρ)
, (41)

where Rnr(ρ) and Rr(ρ) denote the throughputs for the non-robust and the robust schemes,

respectively. Fig. 10 illustrate the maximum value of ξ(ρ) for maxmin design considering 100

random realizations of channel coefficients. It is observed that increasing ρ, decreases the loss

as expected. In addition, adopting the robust scheme results in significantly higher minimum

throughput values in the max-min optimization case.
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Fig. 11. The geometry for the considered asymmetric scenario.

F. Asymmetric scenario

Finally, we consider an asymmetric geometry for pairs in numerical examples. For the purpose

of evaluating the performance of the proposed methods in a more general situation, we consider

the case that IT1 gets far away in y = x axis and other nodes are fixed as shown in Fig. 11

(assuming K = 2). The general observations for the convergence, fairness, etc. are similar to

those for the symmetric scenario. We now investigate the minimum throughput associated with

the setup above (i.e., the throughput of the 1st pair) which is shown in Fig. 12 for the case

of max-min design. It is observed that moving away IT1 results in decreasing the minimum

throughput. This can be explained by noting the fact that the received interference from IT2 to

ET1 does not change (because d2,2 and d2,1 remain unchanged). Furthermore, the power of the

received desired signal from IT1 to ET1 is decreased when increasing d1,1 and d1,2.

VII. CONCLUSION

In this paper, we studied the wireless powered K-user IFC with the harvest-then-transmit

protocol, consisting of K ET-IT pairs. The joint optimization of the energy waveform in first

phase, the transmit powers in second phase, and the time allocation over the two phases was

considered in order to maximize the sum throughput as well as the minimum throughput of

the network. The aforementioned design problems were non-convex and thus difficult to be

solved optimally. Therefore, we proposed a method based on alternating projections and MaMi

techniques. Applying the proposed methods to the design problems provides stationary points
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Fig. 12. Minimum throughput versus distance parameter ∆x (refer to Fig. 11) in max-min design for the asymmetric scenario.

of the problems (under some mild conditions). The effectiveness of the proposed methods

was illustrated by numerical examples in various scenarios. The importance of designing the

collaborative energy waveform and considering the channel estimation error along with non-

linearity in EH circuit were also exemplified. The fairness in the network was also shown by

comparing the throughput of users for sum and min throughput optimizations.

APPENDIX A

A SELECTION OF β IN (34)

The value of β should be selected such that Enl
k (x) + βxxH is convex w.r.t. x. Indeed, we

should have ∇2Enl
k (x) + βIK � 0. It is verified that

∇2Enl
k (x) = α̃kQk + γ̃kQkxx

HQk,

with

α̃k =
2τNkãk
1− Ωk

(
exp

(
−2
(
ãkx

HQkx+ ãk b̃k

))
+ exp

(
−ãkx

HQkx+ ãk b̃k

))
≥ 0, (42)

γ̃k =
2τNkãk
1− Ωk

(
2ãk

(
exp

(
−2
(
ãkx

HQkx+ ãk b̃k

))
− exp

(
−ãkx

HQkx+ ãk b̃k

)))
, (43)

and noting that Qk , hkh
H
k � 0. As α̃k ≥ 0, it suffices to choose β such that γ̃kQkxx

HQk +

βIK � 0; or equivalently,

βIK � −γ̃kQkxx
HQk. (44)

Considering the fact that Qkxx
HQk is a rank-1 matrix, the inequality in (44) holds if

β ≥ −γ̃kx
HQ2

kx. (45)
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Next, it is worth noting that by (43) we can write

− γ̃k ≤
4τNkã

2
k

1− Ωk

exp
(
ãk b̃k

)
, (46)

and also

xHQ2
kx ≤ ‖x‖22λmax

(
Q2

k

)
. (47)

Finally, using (45), (46), (47), and considering the constraint ‖x‖22 ≤
∑K

k=1 pmax,k, we can select

β > β0 with

β0 =

(
4τNkã

2
k

1− Ωk

exp
(
ãkb̃k

))(
λmax

(
Q2

k

))
(

K∑

k=1

pmax,k

)
. (48)
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