
1

Efficient Sum-Rate Maximization for

Medium-Scale MIMO AF-Relay Networks

Mohammad Mahdi Naghsh*, Mojtaba Soltanalian, Petre Stoica, Fellow, IEEE,

Maryam Masjedi, and Björn Ottersten,Fellow, IEEE

Abstract

We consider the problem of sum-rate maximization in multiple-input multiple-output (MIMO)

amplify-and-forward (AF) relay networks with multi-operator. The aim is to design the MIMO relay

amplification matrix (i.e., therelay beamformer) to maximize the achievable communication sum-rate

through the relay. The design problem for the case of single-antenna users can be cast as a non-convex

optimization problem, which in general, belongs to a class of NP-hard problems. We devise a method

based on the minorization-maximization technique to obtain quality solutions to the problem. Each

iteration of the proposed method consists of solving a strictly convex unconstrained quadratic program;

this task can be done quite efficiently such that the suggested algorithm can handle the beamformer

design for relays with up to∼ 70 antennas within a few minutes on an ordinary personal computer

(PC). Such a performance lays the ground for the proposed method to be employed in medium-scale

(or lower-regime massive) MIMO scenarios.
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I. INTRODUCTION

Sum-rate maximization is a fundamental task arising in signal design for communication, and

particularly relay networks, in which relays are often usedto enhance the quality of communica-

tion between pairs of users within the network. In such networks, two-way relaying is shown to

achieve better spectral efficiency as compared to one-way relaying [1]— a fact that has attracted

more research interest to two-way relay networks and in studying them from both theoretical

and practical points of view.

Note that the rate-optimal strategy for two-way relaying isnot yet known in general scenarios

[1]–[3], particularly if one considers the case of several communication operators that provide

communication services in the network (referred to as operator in the sequel). However, various

protocols including decode-and-forward (DF), and amplify-and-forward (AF) have been proposed

in the literature for two-way relay networks [4], [5]. Contrary to the DF case, the AF relaying

does not perform any signal decoding at the relay, and hence enjoys a lower hardware and

software complexity, as well as smaller transmission delay. Interestingly, such simple processing

of AF relying is key to large-scale multiple-input multiple-output (MIMO) systems. In practice,

relays can be equipped with multiple antennas for performance improvement which leads to a

MIMO relaying scheme.

Fig. 1 illustrates a schematic of MIMO multi-operator two-way relay networks (with a large

number of antennas for the relay). User pairs from differentoperators employ the AF relay

(with a large number of antennas) to achieve a better qualityof communication. Note that

the mathematical formulation of the illustrated scenario is the same as multi-pair two-way AF

relaying. Multi-pair two-way relaying is a generalizationof two-way relaying in which more

than one pair of nodes exchange information within the network, by employing the shared

relay. Since these pairs work in the same time slots and frequency bands, multi-pair two-way

relaying improves the spectral efficiency, but it requires further processing to cancel inter-pair

interference. Note that these systems have several potential practical applications, e.g. when

multiple communication partners (belonging to different operators) use one relay (possibly owned

by a third party/virtual operator) and in the same time/spectrum (see also [6] and references

therein for more details/examples).

The sum-rate of a MIMO AF relay system depends on the amplification matrix, i.e. the
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Fig. 1. A schematic of MIMO multi-operator two-way relay networks. User pairs from different operators employ the relay

(with a large number of antennas) to achieve a better qualityof communication.

beamformerof the relay. Therefore, the aim of several works is to designthe relay amplification

matrix to maximize the sum-rate of the network. The sum-ratemaximization problem for the

above mentioned networks is a non-convex optimization problem (and belong to a class of NP-

hard problems [1]) and several algorithms have been proposed in the literature to deal with the

aforementioned problem. In [7], a branch-and-bound methodwas employed to tackle this design

problem in the single-operator case resulting in an overwhelming1 computational burden. A

related method, i.e., the polyblock approximation algorithm [9], was applied in a similar scenario

considering monotonic optimization that can only be used asa benchmark for small/medium

MIMO relay networks due to a prohibitive computational complexity in case of a large number of

antennas (see also [10]). The authors of [1] developed a polynomial-time iterative method based

on a semidefinite relaxation (referred to as POTDC2) to tackle the problem. POTDC guarantees a

rank-one solution only for the special case of single operator and hence, its solution is generally

associated with a synthesis loss. Furthermore, each iteration of POTDC consists of solving a

convex determinat maximization (MAXDET) optimization that has a large computational burden.

1The branch-and-bound algorithm generally has an exponential computational cost [8].

2POlynomial-Time algorithm forDifference ofConvex programming.
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On the other hand, POTDC results outperform those obtained by the approximate (projection-

based) algorithm suggested in [6]. The references [1] and [11] include two heuristic algorithms

based on one and two dimensional searches for the special case of single operator. Suboptimal

methods based on zero-forcing (ZF) and maximum-ratio combining (MRC) have been presented

in [12] for the case of one operator. This work also includes an iterative algorithm solving a

semidefinite program at each iteration. The interested reader can refer to [9], [13], [14], [15] and

[16] for other approximate or heuristic approaches devisedto tackle the sum-rate maximization

problem.

In the case of arbitrary number of operators, there is no efficient method that can lead to

(some type of) optimality of the obtained solution. The heuristic methods are mainly based

on observations for special cases and structured channels.Furthermore, most of the proposed

methods in the literature are merely suitable for small scale problems (see e.g. [1], [13]).

The large-scale MIMO concept addresses employing a large number of antennas for trans-

mit/receive leading to superior performance improvementsfor the systems when compared to

ordinary MIMO systems [17]–[19]. In particular, for sum-rate maximization, it has been shown

that the ZF and MRC are nearly optimal for very large-scale (i.e., massive) MIMO systems; viz.,

when the number of antennas diverges to infinity under certain conditions3 (see e.g., [2], [20],

[22]). However, there exist systems with moderate or even relatively large number of antennas

for which the asymptotic results do not hold; indeed, how large the number of antennas should

be depends on the scenario. Note that conditions for near optimality of ZF/MRC are not satisfied

in medium-scale (i.e., lower-regime massive) MIMO scenarios generally. Therefore, for these

MIMO systems beamformer design for sum-rate maximization will be required to improve quality

of service.

In light of the above, the main contributions of this work canbe summarized as follows:

• The problem is considered in a rather general form enabling the user to freely choose

the number of operators and the structure of the associated matrices (i.e., the channel

parameters).

3For example, in [2] it has been shown that the rationumber of antennas

number of users
should diverge to infinity for the asymptotic results

to hold. Furthermore, an analysis of the behavior of the sum-rate for the systems with respect to the number of antennas atthe

relay and the number of users has been considered in [20] (seealso [21] for a related problem).
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• We devise an iterative method based on the minorization-maximization technique to tackle

the design problem. Applying the proposed method increasesthe value of the objective

function (i.e., the sum-rate) at each iteration. Therefore, it can be shown that the obtained

solution is a stationary point of the problem (under some mild conditions, see [23] and

references therein) satisfying the first-order optimalitycriterion for arbitrary number of

operators. It is worth mentioning that the general case witharbitrary number of operators

leads to a more difficult optimization problem—particularly, the current methods based on

semidefinite relaxation can be applied only in the case of single operator (see the discussion

before Lemma 1).

• The proposed method is computationally efficient and hence can be applied to medium-

scale (or lower-regime massive) MIMO systems as well. Indeed, each iteration of the devised

method consists of solving a convex unconstrained quadratic programme (QP); which can be

efficiently done for instance with anO(n2.3) complexity (wheren is the problem dimension

given by square of the number of antennas) [24]. As a result, the method can handle problems

with n ∼ 103 variables (or equivalentlyMR ∼ 70) on an ordinary personal computer (PC)

within a few minutes.

The rest of this paper is organized as follows. In Section II,we present the system model

and problem formulation. We propose an algorithm for designing the beamformer matrix in

Section III, followed by several observations in Section IV. Section V includes several numerical

examples. Through an efficiency investigation, we show thatthe proposed method can be applied

to relays with large MIMO arrays. Finally, conclusions are drawn in Section VI.

Notation: We use bold lowercase letters for vectors/sequences and bold uppercase letters for

matrices. See Table I for other notations used throughout this paper.

II. PROBLEM FORMULATION

We consider a MIMO AF two-way relay network consisting ofMR antennas,L (communi-

cation) operators and pairs of user terminals belonging to different operators (see the discussion

of Fig. 1 in Section I and [6] along with references therein for details/practical applications of

such systems). We assume single-antenna user terminals andflat fading channels between the

kth user of thelth operator and the relay, which are denoted by{hk,l} [1]. The received signal
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TABLE I

NOTATIONS

x(k): the kth entry of the vectorx

‖x‖n: the ln-norm of the vectorx, defined as
(
∑

k
|x(k)|n

) 1

n

XH : the transpose conjugate of a matrixX

XT : the transpose of a matrixX

tr(X): the trace of a matrixX

λmax(X): the maximum eigenvalue of the hermitian matrixX

λn(X): the nth eigenvalue of the matrixX

‖X‖F : the Frobenius norm of a matrixX

X � Y: X−Y is positive semidefinite

⊗: the Kronecker product

vec(X): the vector obtained by column-wise stacking ofX

In: the identity matrix ofCn×n

e
(n)
l : the lth standard basis vector inRn

R: the set of real numbers

C: the set of complex numbers

ℜ(x): the real part ofx

∇f(x): the gradient of the differentiable functionf(x)

∇2f(x): the Hessian of the two-times differentiable functionf(x)

f(n) = O(nx): f(n) is upper bounded byc nx for some0 < c <∞

E{x}: the expected value of the random variablex

x ∼ CN (0,Σ): the zero-mean random vectorx is distributed according

to the circularly symmetric complex Gaussian distribution

with covarianceΣ.

at the relay can be expressed as [1], [6],

r =
L∑

l=1

2∑

k=1

hk,lxk,l + nR (1)

wherexk,l is the transmitted symbol by thekth user of thelth operator with powerpk,l (given

by E{|xk,l|
2}), andnR denotes the circularly symmetric white Gaussian noise withcovariance

matrix σ2
RI at the relay. By employing the AF protocol, the transmit signal of the relay is given

by

r̃ = Gr (2)
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with G ∈ C
MR×MR being the relay amplification matrix, which is to be designed. We assume

reciprocal channels between the relay and users [6]; consequently, the received signalyk,l of the

kth user at thelth operator becomes

yk,l = hT
k,lr̃+ nk,l (3)

wherenk,l is the associated (white) noise component (with varianceσ2
k,l). The sum-rate of the

system can be formulated as [6]

Rsum =
1

2

L∑

l=1

2∑

k=1

log2(1 + ηk,l). (4)

Hereinηk,l denotes the signal-to-interference-plus-noise ratio (SINR) for thekth user of thelth

operator and it has the following expression (see Appendix Afor the detailed derivation of this

expression)

ηk,l =
gHΦk,lg

gH(Υk,l +∆k,l)g + σ2
k,l

(5)

whereg = vec(G) and the matricesΦk,l,Υk,l,∆k,l are defined as

Φk,l = pk,l
(
hT
3−k,l ⊗ hT

k,l

)H (
hT
3−k,l ⊗ hT

k,l

)
(6)

Υk,l =
∑

k̃

∑

l̃ 6=l

p
k̃,l̃

(
hT

k̃,l̃
⊗ hT

k,l

)H (
hT

k̃,l̃
⊗ hT

k,l

)

∆k,l = σ2
R

(
IMR

⊗ (hk,lh
H
k,l)

T
)
.

Note that in the definition of the SINR in (5) and (6), the effect of the “self-interference” has been

ignored—due to the assumption that terms corresponding to self-interference can be canceled

using the channel knowledge4 (see e.g., [28] and [6] for details). The devised method in this

paper, however, can also be applied to the sum-rate maximization problem without making such

an assumption.

4The channel state information (CSI) of all links is requiredat the relay which can be estimated if each user sends a training

block of lengthNt ≥ 2L to the relay [26]. Furthermore, the considered time-division duplex (TDD) relaying leads to reciprocal

channels between the users and the relay [27]. Consequently, the downlink channel matrix can be obtained by transposingthe

uplink one and taking calibration into account. At the usersside, thekth user of lth operator should only know two scalar

parametershT
k,lGhk,l and hT

k,lGh3−k,l for self-interference cancellation as well as data detection, respectively (that may be

estimated by forwarding the training signal received by therelay).
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The sum-rate maximization is constrained via the total available powerPR at the relay, viz.

E{‖r̃‖22} = tr{E{GrrHGH}} (7)

=
L∑

l=1

2∑

k=1

pk,l‖Ghk,l‖
2
2 + σ2

R‖G‖2F ≤ PR

which can be expressed with respect to (w.r.t.)g asgHCg ≤ PR where5

C = σ2
RIM2

R
+

L∑

l=1

2∑

k=1

pk,l((hk,lh
H
k,l)

T ⊗ IMR
). (8)

The aim is to design the AF amplification matrixG in order to maximize the sum-rateRsum.

Therefore, the design problem (i.e., sum-rate maximization) in MIMO AF relay networks with

L operators can be cast as the following problem:

max
g

1

2

L∑

l=1

2∑

k=1

log2

(
1 +

gHΦk,lg

gH(Υk,l +∆k,l)g + σ2
k,l

)

s. t. gHCg ≤ PR. (9)

Note that the inequality constraint in the above problem is active (i.e. satisfied with equality) at the

optimal point. More precisely, assume thatg is an optimal solution to (9) withgHCg = P0 < PR.

Then a scaled version ofg which satisfies the constraint with equality, i.e.g1 =
√
PR/P0 g, will

lead to a larger objective value. This contradicts the optimality assumption ofg. Considering

this observation, the optimization in (9) can be equivalently recast as the following problem6:

max
g

L∏

l=1

2∏

k=1

gHAk,lg

gHBk,lg
(10)

s. t. gHCg = PR

where we have used the following definitions:

Bk,l = Υk,l +∆k,l +
σ2
k,l

PR

C, (11)

Ak,l = Bk,l +Φk,l.

The objective function of the problem (10) consists of the product of several fractional quadratic

functions. This problem is non-convex and belongs to a classof NP-hard problems in general

[1].

5The derivations of (7) and (8) are similar to those developedin Appendix A.

6In (10) we letk run from 1 to 2 as in (9); however, from a mathematical point of view, the suggested approach can handle

an arbitrary interval fork.
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III. SUM-RATE MAXIMIZATION

A. The Proposed Algorithm

Note that the objective function in (10) is invariant with respect to scaling; therefore, we

can deal with the unconstrained problem and then scale the solution g such that it satisfies the

constraintgHCg = PR. In this paper, we use the minorization-maximization (or majorization-

minimization) technique to tackle the non-convex design problem in (10). Minorization-maximization

(MaMi)7 is an iterative technique that can be used for obtaining a solution to the general

maximization problem [23] [29]:

max
z

f̃(z) (12)

s. t. c(z) ≤ 0.

Each iteration (say theκth iteration) of MaMi consists of two steps (see Fig. 2):

• Minorization Step: Finding̃p(κ)(z) such that its maximization is simpler than that off̃(z)

and p̃(κ)(z) minorizesf̃(z), i.e.,

p̃(κ)(z) ≤ f̃(z), ∀z (13)

p̃(κ)
(
z(κ−1)

)
= f̃

(
z(κ−1)

)

with z(κ−1) being the value ofz at the(κ− 1)th iteration.

• Maximization Step: Solving the optimization problem,

max
z

p̃(κ)(z) (14)

s. t. c(z) ≤ 0

to obtainz(κ).

Now, consider the following equivalent form of the problem in (10):

max
g

L∑

l=1

2∑

k=1

[
log
(
gHAk,lg

)
− log

(
gHBk,lg

) ]
(15)

Note that the following inequality holds due to the concavity of log(x) for all x, x0 ∈ R+:

log(x) ≤ log(x0) +
1

x0
(x− x0). (16)

7This technique is also known as the MM algorithm in the literature [29].
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Fig. 2. An illustration of the MaMi technique.

Therefore, the term− log(gHBk,lg) can be minorized using the above inequality at any given

g0. More precisely, settingx0 = gH
0 Bk,lg0 and x = gHBk,lg leads to the following minorizer

for − log(gHBk,lg):

− log(gHBk,lg) ≥ (17)

− log(gH
0 Bk,lg0)−

1

gH
0 Bk,lg0

(gHBk,lg − gH
0 Bk,lg0).

Additionally, substituting the term− log(gHBk,lg) in (15) with the above minorizer (and ne-

glecting the constants) leads to the following maximization problem at the(κ+ 1)th iteration:

max
g

L∑

l=1

2∑

k=1

[
log(gHAk,lg)−

1

(g(κ))HBk,lg(κ)
gHBk,lg

]
. (18)

Inspired by the rich literature on semidefinite relaxation,we note that by consideringX = ggH

as the optimization variable in (18) and dropping the rank-1constraint, a convex alternative

of (18) can be obtained at each iteration (see e.g., [30]). Once a solutionX is obtained, the

optimized vectorg should be then synthesized fromX. However, there is no guarantee for

a rank-1 solution8 X, and hence, this approach is associated with a synthesis loss [31]. In

addition, applying the relaxation leads to iteratively solving a MAXDET problem possessing

a high computational burden (a similar algorithm has been suggested in [1]). Instead, in the

sequel, we devise a computationally efficient method that increases the objective value at each

iteration and guarantees the first-order optimality condition for the solutiong (under some mild

8Note that by employing the aforementioned semidefinite relaxation, a rank-1 solutionX can be obtained just for the single

operator case withL = 1 (see [1] for details).
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conditions, see [23], [30] for details). To this end, we proceed by finding a minorizer for the

term log(tr{Ak,lX}) as a function ofg using the following Lemma.

Lemma 1. Let s(x) = − log(xHTx) andxHCx = P for any positive-definite matricesT,C in

CN×N as well asP ∈ R+. Then, the following inequality holds∀ x,x0:

s(x) ≤ s(x0) + ℜ
(
bH(x− x0)

)
+ (x− x0)

HU(x− x0) (19)

where

b =

(
−2

xH
0 Tx0

)
Tx0 (20)

U =

(
4P

wH
1 Cw1

+ ǫ

)
I

and wherew1 is the principal eigenvector ofT and ǫ > 0 is arbitrary.

Proof: See Appendix B

Assume thatgHCg = PR at each iteration (see the Remark 1 below). Now observe that

using the above lemma, the following minorizer is obtained for the termlog(gHAk,lg) at any

giveng0:

log(gHAk,lg) ≥ log(gH
0 Ak,lg0)−ℜ

(
(bk,l)

H (g − g0)
)

−(g − g0)
HUk,l(g − g0) (21)

wherebk,l andUk,l are related toAk,l and can be calculated by employing (20) in the Lemma

(see (23) below). Based on (18) and (21), we consider the minimization of the following criterion

w.r.t. g at the(κ + 1)th iteration of the proposed method:

L∑

l=1

2∑

k=1

[
gH

(
Bk,l

(g(κ))
H
Bk,lg(κ)

+Uk,l

)
g (22)

+ℜ
((

bk,l − 2Uk,lg
(κ)
)H

g
)]

with

bk,l =

(
−2

(g(κ))
H
Ak,lg(κ)

)
Ak,lg

(κ), (23)

Uk,l =

(
4PR

w̃H
k,lCw̃k,l

+ ǫ

)
I,
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and w̃k,l denoting the principal eigenvector ofAk,l. The above optimization problem can be

recast as the following unconstrained QP:

min
g

gHQ(κ)g + ℜ
((

q(κ)
)H

g
)

(24)

where

Q(κ) =

L∑

l=1

2∑

k=1

[
Bk,l

(g(κ))
H
Bk,lg(κ)

+Uk,l

]
, (25)

q(κ) =
L∑

l=1

2∑

k=1

[
bk,l − 2Uk,lg

(κ)
]
. (26)

Note thatBk,l � 0, and alsoUk,l ≻ 0 because it is a scaled version of identity matrixI with a

positive scalar. Therefore, the matrixQ(κ) is positive-definite at each iteration. Consequently, the

problem in (24) is strictly convex w.r.t.g. The unique solution to this optimization is obtained

by solving the system of linear equations2Q(κ)g + q(κ) = 0, viz.

g = −
1

2

(
Q(κ+1)

)−1
q(κ). (27)

It is worth noting that the solutiong to the above system of linear equations can also be obtained

via directly solving the linear system using more efficient techniques, and thus avoiding the

inverse (see e.g., [32], [33], and the references therein).

Remark 1:Note that the above solutiong does not necessarily satisfy the constraintgHCg =

PR of the original problem (10) at each iteration. As mentionedbefore, we can scale the obtained

solution at the convergence to deal with this issue as the objective function in (10) is scale

invariant. However, the derivation of the matrixUk,l in Lemma 1 requires the satisfaction of

the constraint at each iteration; see Appendix B for details. Therefore, we need to scale the

obtainedg at each iteration such thatgHCg = PR. Note also that the scaling does not affect

the convergence of the sequence of the objective function values associated with the problem

(10). �

Table II summarizes the steps of the proposed method for relay beamformer design to max-

imize the communication sum-rate. The suggested method improves the value of the objective

function at each iteration (see Section IV-B). Note that thecomputational complexity of the

method is linear with the number of iterations̄N . Furthermore, each iteration of the algorithm

consists of solving a strictly convex problem (24) using either the closed-form solution in
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TABLE II

THE PROPOSED METHOD FOR SUM-RATE MAXIMIZATION VIA RELAY BEAMFORMER DESIGN

Step 0: Initialize g with a random vector inCM2

R (and scale it

such thatgHCg = PR); setκ = 0.

Step 1: ComputeQ(κ) andq(κ) using (25).

Step 2: Solve the convex problem in (24) using either the closed-

from expression (27) or direct methods (for solving the associated

system of linear equations) to obtaing(κ+1).

Step 3: Scale the obtained solutiong(κ+1) such that

(g(κ+1))HCg(κ+1) = PR; setκ← κ+ 1.

Step 5: Repeat steps 1-3 until a pre-defined stop criterion is

satisfied, e.g.|f (κ+1)−f (κ)| ≤ ξ (wheref denotes the objective

function of the problem (10)) for someξ > 0.

(27) or direct/iterative methods for solving systems of linear equations [32], [33]. The steps

for computing the solution can be implemented e.g. via the algorithms in [24] (for matrix

multiplications) withO(n2.3) complexity wheren = M2
R is the problem dimension. The devised

method can handle problems of dimension on the order of103 variables on an ordinary PC

within a few minutes. The computational efficiency of this method makes it potentially useful in

medium-scale MIMO systems (see [34] for descriptions of a recently developed prototype of such

a system). We herein also remark on the fact that the MaMi algorithms were originally developed

to achieve a very low computational burden by avoiding complicated matrix inversions that are

an indispensable part of off-the-shelf optimization packages; see, e.g. [35]. Also, comparisons

with various methods show that MaMi algorithms are usually difficult to beat in terms of stability

and computational simplicity [29].

B. Weighted Sum-Rate Maximization

In practice, the users of specific operators may have a higherpriority compared to others. In

such cases, a maximization of the weighted sum-rate becomesof interest. The weighted sum-rate

is given by

1

2

L∑

l=1

2∑

k=1

wk,l log2(1 + ηk,l) (28)
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with wk,l being the (non-negative) weights associated with thekth user of thelth operator. Similar

to the sum-rate maximization case, the corresponding optimization problem can be cast as

max
g

L∏

l=1

2∏

k=1

(
gHAk,lg

gHBk,lg

)wk,l

(29)

s. t. gHCg = PR.

The above problem can be dealt with via the proposed method inthis paper after some minor

modifications. To see this, consider the following equivalent form for the problem in (29):

max
g

L∑

l=1

2∑

k=1

wk,l

[
log
(
gHAk,lg

)
− log

(
gHBk,lg

) ]

and note that solutions to the above problem, which is a modified version of (15), can be obtained

via the algorithm in Table II, using

Q(κ) =

L∑

l=1

2∑

k=1

wk,l

[
Bk,l

(g(κ))
H
Bk,lg(κ)

+Uk,l

]
, (30)

q(κ) =
L∑

l=1

2∑

k=1

wk,l

[
bk,l − 2Uk,lg

(κ)
]
, (31)

in lieu of (25)-(26).

IV. SUM-RATE UPPER BOUND AND SOME

COMPUTATIONAL ASPECTS

A. Sum-Rate Upper Bound

In the following, we derive an upper bound on the objective function of (10), and the associated

sum-rate metric. Note that the boundedness of (10) is a key fact for the convergence of the

proposed method—see Section IV-B below for details. We observe that each term of the product

on the right-hand side of

22Rsum =
L∏

l=1

2∏

k=1

gHAk,lg

gHBk,lg
(32)

can be bounded from above by considering the related generalized eigenvalue problem, viz.

gHAk,lg

gHBk,lg
≤ λmax

{
B−1

k,lAk,l

}
. (33)

Moreover, as the sum-rate is invariant with respect to permutations of the matrices{Ak,l}

and {Bk,l} within the products, the upper bound may be strengthened by considering such
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permutations. More precisely, letπ(k, l) : {1, 2} × {1, · · · , L} → {1, 2} × {1, · · · , L} denote

a generic permutation function over all possible(k, l). Then, according to the generalized

eigenvalue upper bound,

gHAπ(k,l)g

gHBk,lg
≤ λmax

{
B−1

k,lAπ(k,l)

}
(34)

which implies

Rsum ≤
1

2
log2

(
min
π(k,l)

{
L∏

l=1

2∏

k=1

λmax

{
B−1

k,lAπ(k,l)

}
})

. (35)

Next note that the equality in (34) is attained wheng is a principal eigenvector of the matrix

B−1
k,lAπ(k,l). As a consequence, the upper bound in (35) is attained when matricesA, B, and

{Uk,l} (with B, and{Uk,l} being invertible) exist such thatAπ(k,l) = AUk,l andBk,l = BUk,l,

for all (k, l) ∈ {1, 2}× {1, · · · , L}. This shows that the bound in (35) is tight and it can not be

improved upon unless the class of matrices{Ak,l,Bk,l} is restrained.

B. Convergence

In order to study the convergence of the devised approach, observe that

f
(
g(κ−1)

)
= p(κ)

(
g(κ−1)

)
(36)

≤ p(κ)
(
g(κ)

)
≤ f

(
g(κ)

)

wherep(κ)(.) is the minorizer associated with the objectivef(.) at theκth iteration. The first

inequality in (36) holds due to the maximization step at theκth iteration, whereas the second

inequality comes from the definition of the minorizer (see (13)). This monotonically increasing

property together with the derived upper bound in (35) guarantees the convergence of the

sequence of the objective values{f
(
g(κ)

)
}, and hence of the sum-rate metric. Note that the

obtained solutions via the proposed method are stationary points of the problem (under some

mild conditions [23]) satisfying the first-order optimality criterion for the non-convex problem

(10).

C. Practical Real-Time Applications

The communication channels{hk,l} are subject to change with time in real-world applications

in particular due to the relative motions of users/relay/scatterers. The time intervals for which
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the channels can be assumed to be invariant depend on the Doppler spreads of the channels

(see e.g., [36], [37] for details). Note that for any new set of channel parameters{hk,l}, a

new beamforming matrixG is to be designed. Therefore, the convergence speed (computational

complexity) associated with the design method plays an important role in the applicability of the

method. In addition to general results on the computationalefficiency of the proposed method,

an interesting aspect of the proposed method is that the quality of the obtained solution and the

convergence speed depend on the employed starting point (see Section V and [23] for details).

Therefore, in real-time applications where the communication channels{hk,l} change with time,

the proposed method can quickly converge if initialized with the preceding solutiong. Note also

that in practical real-time applications, the method can beimplemented more efficiently (e.g.,

via implementation in C language, parallelization, and so on) and be run on powerful digital

signal processors (DSP/FPGA) to speed up the convergence significantly (see the discussion of

Table II as well).

V. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, the performance of the proposed method is evaluated via Monte-Carlo simula-

tions. An AF based bidirectional MIMO relay network withL operators andMR antennas at the

relay is considered. The variances of the Gaussian noises for the relay and users are assumed to

be equal, i.e.,σ2
R = σ2

k,l = σ2
n. For the sake of comparison, we use the same power allocation

as considered in other related works (see e.g., [1], [6] and the references therein); namely, we

assume that the transmit powers of the relay and users are identical, i.e.,PR = pk,l = p. The

signal-to-noise ratio (SNR) is defined asp/σ2
n. Moreover, the normalized distance betweenkth

user of thelth operator and the relay is represented bydk,l. For simplicity and without loss of

generality, we assume thatd1,l = d1 and d2,l = d2 (with d1 + d2 = 1). Therefore, the near-far

(N/F) ratio is defined asd1/d2. The Rayleigh flat fading channel vectors{hk,l} are reciprocal

and spatially uncorrelated. The path loss exponent is assumed to be3 in all simulations, thus

the fading variances are proportional to1/d3k,l [36], [37]. As a result,{hk,l} are modeled as

independent Gaussian random vectors withhk,l ∼ CN
(
0, (d0/dk,l)

3
I
)

whered0 = 0.1 is the

considered reference point. All the results are presented considering100 realizations of the

associated fading channels. As to the convergence of the proposed method, we considerξ = 10−3

in Table II. The QP of the step 1 of the proposed method (see Table II) is solved using the
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embedded MATLAB function for directly solving systems of linear equations9.

We begin by investigating the effect of the SNR on the sum-rate in a symmetric scenario (i.e.,

d1 = d2). The sum-rate values associated with the proposed method as well as the POTDC10

method of [1] versus SNR are shown in Fig. 3 forMR = 4 andMR = 8 with L = 2. As expected,

the sum-rate is increasing with respect to SNR. Furthermore, the results of the proposed method

are slightly better than those of the method in [1] because the proposed method circumvents the

synthesis loss associated with POTDC. This figure also includes the results for ZF and MRC

methods withMR ∈ {4, 8} andMR = 20 (that can be considered as a medium-scale MIMO

scenario). It can be observed that the proposed method outperforms well ZF and MRC methods.

This observation is compatible with the fact that ZF and MRC are merely nearly optimal when

the number of antennas diverges to infinity. Next, we study the effect of the N/F ratio. Fig. 4

plots the sum-rate values versus different N/F ratios (L = 2, SNR=20dB). The proposed method

achieves better results in the whole interval of the N/F ratio when compared to other methods.

Note that the N/F ratio is defined asd1/d2 and the maximum rate is achieved in the symmetric

scenario where the relay is in the middle of users (see [4] formore details and [1], [6] for similar

behaviors). Note that in the above figures, we do not include the results of POTDC method for

MR = 20 due to prohibitive computational burden.

It can be observed from Fig. 3 and Fig. 4 that the larger the number of antennasMR, the

larger the sum-rate. This aspect is further explored in Fig.5 (a) and (b) where the values of

sum-rate are plotted versusMR for L = 1 andL = 2, respectively. Fig. 5 (a) also includes two

ad-hoc algorithms, namely 1-D RAGES and 2-D RAGES [1] along with the upper bound [16]

on the sum-rate values forL = 1. The monotonically increasing behavior of the sum-rate with

respect toMR is evident from these figures. This behavior can be justified by considering the

fact that larger values ofMR (i.e., more antennas at the relay) provide more degrees of freedom

for the design problem. For the case ofL = 1, the differences between the sum-rate values of

various methods are minor. Note that the curves associated with POTDC, 1-D RAGES, and 2-D

RAGES are truncated for larger values ofMR due to the prohibitive computational burden of

9The reader may refer to the MATLAB command “A\b” for obtaining the solution to the linear systemAx = b.

10It has been shown that POTDC outperforms several existing methods for sum-rate maximization in the conventional MIMO

scenarios (see e.g., [1], [11], [28]).
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Fig. 3. The values of sum-rate associated with the proposed method and the method of [1] (i.e., POTDC), ZF, as well as MRC

versus SNR forL = 2.
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Fig. 4. The sum-rate values for various methods versus N/F ratio for L = 2 and SNR=20dB.

these methods. We further note that the proposed method tracks the upper bound for various

MR well.

Fig. 5 (a) and (b) plot the sum-rate values for the ZF as well11. It can be observed from Fig.

5(b) that for a wide range of the consideredMR, the proposed method outperforms well the ZF,

11We do not include the results of MRC because forL = 1 is very similar to ZF and forL = 2 is not competitive.

April 13, 2016 DRAFT



19

0 10 20 30 40 50 60 70
5

6

7

8

9

10

11

12

 

 

19.5 20 20.5

9.2

9.25

9.3

9.35

 

 

su
m

-r
at

e
(b

it/
se

c/
H

z)

Proposed
POTDC
1-D RAGES
2-D RAGES

MR

Upper bound
ZF

(a)

0 10 20 30 40 50 60 70
0

5

10

15

20

25

 

 

su
m

-r
at

e
(b

it/
se

c/
H

z)

Proposed
POTDC

MR

ZF

(b)

Fig. 5. The sum-rate values for various methods versus the number of antennasMR: (a) the case ofL = 1, (b) the case of

L = 2. The SNR is set to20dB.

as expected (see the explanations related to lower-regime massive in Section I). Then, by further

increasing the number of antennas, ZF tends to the obtained values by the proposed method

(massive regime). Note that the borderline between the lower-regime massive and massive is not

sharp and also depends on other parameters like the number ofoperatorsL; e.g., in Fig. 5(a),

at smaller values ofMR we have similar sum-rate values for the proposed method and ZF (this

point will be analyzed shortly–see Fig. 6 below).

It can also be observed from Fig. 5 (a) and (b) that the sum-rate for L = 1,MR = 2 is larger

than that of the case withL = 2,MR = 2. This can be explained considering the fact that in the

case ofL = 2, the interference power for the users of the first (second) operator grows due to

the existence of the interferences corresponding to users of the second (first) operator; whereas,

when the system has one operator, the interference power only comes from the relay/receivers’

noise. This leads to a lower sum-rate value for the system with two operators (andMR = 2).

Note that by increasing the number of antennasMR, a judicious design of the relay beamformer

matrixG decreases the interference power and as a result, larger sum-rate values will be obtained

(see Fig. 5 (a) and (b)). However, for smallMR, there are not sufficient degrees of freedom (in

the design problem) to circumvent the interference power associated with the second operator.

Therefore, one can conclude that a large number of antennas for the relay becomes quite useful
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Fig. 7. The average run-time (seconds) for various methods versus the number of antennasMR associated with Fig. 5: (a) the

case ofL = 1, and (b) the case ofL = 2. Note that the problem dimension is given byn = M2
R.

when several operators are supposed to work simultaneously.

The effect of the number of operatorsL is considered in Fig. 6. The figure shows the sum-rate

values versusL for MR = 20 and SNR=20dB. The figure includes the results of the proposed

method and ZF (we do not include MRC herein as it is not competitive). Also, the POTDC has
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prohibitive computational time forL > 2 and RAGES methods can not be applied forL > 1.

It is observed that largerL leads to more significant gap between the proposed method andZF.

This behavior can be explained considering the fact that theasymptotical near optimality of ZF

depends on the number of operatorsL in addition to the number of antennasMR (see Section

I and [2]).

The computational times of the various methods for tacklingthe sum-rate optimization problem

(10) are analyzed in Fig. 7 (a) and (b), respectively. The figures illustrate the average compu-

tational time considering10 runs of the methods with random initializations on an ordinary

PC (with 8GB RAM and CPU CoRe i5). It can be seen that the POTDC method has the

highest computational burden as compared to the other methods (note that the values for POTDC

correspond to10 iterations). The 1-D RAGES and 2-D RAGES algorithms can be employed

for up toMR = 40 [1]. It is observed that the proposed method has much lower computational

cost when compared to the existing methods. To be more precise, the computational time of

our method is on the order of (at most) a few seconds atMR ∼ 40, 50. We remark on the

fact that the ZF and MRC methods have lower computational burden when compared to the

proposed method; however, the resulting sum-rate values corresponding to these methods are

considerably lower than that of the proposed method in conventional and medium-scale (lower-

regime massive) MIMO systems (see e.g., Figs. 3, 4, 5, and 6 and the discussion in Section I).

Therefore, meaningful improvements in the sum-rate values(i.e., locally optimal values) can be

achieved by the proposed method in such systems at the cost ofa higher computational burden

as compared to the ZF/MRC (see Section IV-C for a discussion of the computational time and

practical applications).

We next investigate the initialization and convergence speed/time of the proposed method. To

analyze the random initialization, we report the histogramof the convergence times on a standard

PC (see above) for various random initiations. We consider300 independent random Gaussian

vectors inCM2
R with i.i.d. elements. Fig. 8 (a) and (b) plot the aforementioned histograms for

the case ofL = 1 as well asL = 2, respectively (assumingMR = 20 and SNR=20dB). It can be

observed that the histograms are concentrated well around the corresponding averaged values in

Fig. 7. The convergence time of the proposed method when it isinitialized by the sub-optimal

solutions is shown in Fig. 9 versusMR. In this figure, the ZF and MRC are employed to initialize

the proposed method for SNR=20dB. As expected, such starting points speed up the convergence
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Fig. 8. The histograms of the computational time (sec.) for the proposed method on a standard PC employing300 random

Gaussian starting points, a)L = 1, b) L = 2. The values ofMR and SNR are set to20 and20dB, respectively.

of the algorithm as compared to the random initialization.

VI. CONCLUSION

The problem of sum-rate maximization in MIMO AF relay networks with multi-operator was

considered. The aim was to optimally design the relay beamforming matrix in order to maximize

the communication sum-rate. The design problem was cast as the maximization of a product of

many fractional QPs subject to the relay power constraint, which belongs to a class of NP-hard

problems in general. We devised an iterative method based onthe minorization-maximization

(MaMi) technique to deal with the problem. The minorizers for the objective function terms

were derived by using linear and quadratic minorizers for matrix/vector functions. The proposed

method provides quality solutions to the design problem (i.e., stationary points of the problem,

under some mild conditions) for an arbitrary number of operators L. Each iteration of the

proposed method was dealt with via solving an unconstrained(strictly) convex QP either using a

closed-form solution or by solving a system of linear equations. Numerical examples confirmed

the effectiveness of the proposed method when compared to other methods in terms of the

solution quality and the computational efficiency. In particular, the method could handle design

problems of dimensions of up to several thousands variables(equivalently, a number of antennas
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of up toMR ∼ 70) on an ordinary PC within a few minutes, which makes it potentially useful

in medium-scale (or lower-regime massive) MIMO scenarios.
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APPENDIX A

THE DERIVATION OF THE SINR EXPRESSION IN(5)

Note that the SINRηk,l for thekth user of thelth operator can be computed via the following

expression:

ηk,l =
E{|hT

k,lGh3−k,lx3−k,l|2}

E{|
∑

k̃,l̃ 6=l h
T
k,lGhk̃,l̃xk̃,l̃|

2}+ E{|hT
k,lGnR|2}+ σ2

k,l

(37)

in which the numerator can be expanded as

E{|hT
k,lGh3−k,lx3−k,l|

2}

= E{|x3−k,l|
2}(hT

k,lGh3−k,l)(h
T
k,lGh3−k,l)

∗

= pk,ltr{(h
T
k,lGh3−k,l)

H}tr{hT
k,lGh3−k,l}

= pk,lvec(G)H
(
(hT

3−k,l ⊗ hT
k,l)

H(hT
3−k,l ⊗ hT

k,l)
)

vec(G)

In the above we have used the fact that the scalarhT
k,lGh3−k,l can be alternatively written as

(hT
3−k,l⊗hT

k,l)vec(G) considering the Kronecker product propertytr{ABC} = (CT ⊗A)vec(B)

[38]. Now by definingg = vec(G) and

Φk,l = pk,l(h
T
3−k,l ⊗ hT

k,l)
H(hT

3−k,l ⊗ hT
k,l)
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the numerator ofηk,l in (37) can be rewritten asgHΦk,lg. Using similar calculations, the terms

in the denominator of the SINRηk,l in (37) can be straightforwardly expressed as they are stated

in (5) and (6). Note that (7) and (8) can also be verified via similar techniques.

APPENDIX B

PROOF OFLEMMA 1

We begin the proof by separating the real and imaginary partsof the variablex ∈ CN as

[zT yT ]T ∈ R
2N . Next, we consider the Taylor expansion of the functions

(
[zT yT ]T

)
which

leads to a standard quadratic majorizer [29]. It can be verified that by employing straightforward

techniques, the aforementioned majorizer can be expressedw.r.t. x as

s(x) ≤ s(x0) + ℜ
(
∇s(x)H |x=x0(x− x0)

)
(38)

+(x− x0)
HU(x− x0)

for all x,x0. Note that the existence ofU � 0 such that∇2s(x) � U for all x guarantees

holding of the above inequality [29]. In the sequel, we derive the matrix boundU on ∇2s(x).

Let h(x) = xHTx andx = [zT yT ]T ; using the results of [38], [39] it is verified that

∇s(x) =
−1

h(x)
∇h(x) =

−2Tx

xHTx
, (39)

∇2s(x) =
−1

h(x)
∇2h(x) +

∇h(x)∇h(x)H

∇2h(x)

=
−2T

xHTx
+

4TxxHT

(xHTx)2
.

Note thatT � 0, and therefore, the first term in the expression of∇2s(x) is negative-definite.

As a result, it suffices to obtainγ > 0 such that

4TxxHT

(xHTx)2
� γI. (40)

Herein, we remark on the fact that several algebraic bounds can be obtained satisfying (40);

however, the tightness of the bound affects the convergencespeed and quality of the solution.

Therefore, in what follows, we derive the bound consideringan optimization problem. Indeed,

as the matrixTxxHT is rank-one, we can selectγ asγ > 4ζ with

ζ = max
x

xHT2x

(xHTx)2
(41)
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The positive definiteness of the matrixT ensures existence of the full-rank (square) matrixV

such thatT = VVH. Let a = VHx and consider the following equivalent expression for the

above objective function w.r.t.a:
(
aH(VHV)a

aHa

)(
1

aHa

)
.

The latter change of variables leads to the following optimization problem12:

max
a

(
aH(VHV)a

aHa

)(
1

aHa

)
(42)

Now, we proceed by solving the above optimization problem inorder to obtainζ . Observe

that the first factor in the objective of the problem in (42) isindependent of‖a‖2. Indeed, by

noting that the expressiona
H(VHV)a

aHa
is a Rayleigh quotient [38], one can immediately obtain

its maximum value given byλmax(V
HV). This value is achievable by choosinga to have the

samedirection (i.e. a/‖a‖2) as the principal eigenvector of the matrixVHV, denoted byv1.

Once the direction of the optimala (i.e. a/‖a‖2 = v1) is obtained, the value of‖a‖2 can be

calculated by considering the constraintxHCx = P . More concretely, we have

(V−Ha)HC(V−Ha) = P

which yields

‖a‖2 =

√
P

vH
1 V

−1CV−Hv1

. (43)

The maximum value of the objective function in (42) is thus given by

ζ =

(
P

vH
1 V

−1CV−Hv1

)
λmax(V

HV) (44)

=

(
P

vH
1 V

−1CV−Hv1

)
λmax(T).

Consequently, we can selectγ = 4ζ + ǫ for someǫ > 0 to bound∇2s(x). Note that asT ≻ 0,

the matrixV is invertible. Finally, using (38), (39), (44), and the discussions above we obtain

b , ∇s(x)|x=x0 =
−2Tx0

xH
0 Tx0

(45)

U ,

(
4P

w1
HCw1

+ ǫ

)
I

wherew1 is the principal eigenvector of the matrixT; and hence the proof is complete.

12Due to the fact thatT ≻ 0, the optimalx can be uniquely determined via the optimala.
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