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Abstract

We consider the problem of sum-rate maximization in muatiplput multiple-output (MIMO)
amplify-and-forward (AF) relay networks with multi-opéoa The aim is to design the MIMO relay
amplification matrix (i.e., theelay beamformérto maximize the achievable communication sum-rate
through the relay. The design problem for the case of singtenna users can be cast as a non-convex
optimization problem, which in general, belongs to a clasbl®-hard problems. We devise a method
based on the minorization-maximization technique to obtgiality solutions to the problem. Each
iteration of the proposed method consists of solving atstramnvex unconstrained quadratic program;
this task can be done quite efficiently such that the sugdestgporithm can handle the beamformer
design for relays with up tev 70 antennas within a few minutes on an ordinary personal coenput
(PC). Such a performance lays the ground for the proposebandb be employed in medium-scale

(or lower-regime massive) MIMO scenarios.

Keywords: Amplify and forward, beamforming, medium-sdsliMO, minorization-maximization

(majorization-minimization), massive MIMO, relay netwer sum-rate

This work was supported in part by the Swedish Research @ounc M. M. Naghsh and M. Masjedi are with the
Department of Electrical and Computer Engineering, Isfidbaiversity of Technology, Isfahan 84156-83111, Iran. Mlt&nalian
is with the Department of Electrical and Computer EnginggriUniversity of lllinois at Chicago, Chicago, IL 60607. P.
Stoica is with the Dept. of Information Technology, Uppsklaiversity, Uppsala, SE 75105, Sweden. B. Ottersten is ti¢h
Interdisciplinary Centre for Security, Reliability anduBt, University of Luxembourg, L-2721, Luxembourg.

* Please address all the correspondence to M. M. Naghsh,ePH{@88) 311-3912450; Fax: (+98) 311-3912451; Email:
mm_naghsh@cc.iut.ac.ir

April 13, 2016 DRAFT



I. INTRODUCTION

Sum-rate maximization is a fundamental task arising inaigiesign for communication, and
particularly relay networks, in which relays are often useeénhance the quality of communica-
tion between pairs of users within the network. In such netg/atwo-way relaying is shown to
achieve better spectral efficiency as compared to one-waying [1]— a fact that has attracted
more research interest to two-way relay networks and inystgdthem from both theoretical
and practical points of view.

Note that the rate-optimal strategy for two-way relayingag yet known in general scenarios
[1]-[3], particularly if one considers the case of sevemneunication operators that provide
communication services in the network (referred to as dpeia the sequel). However, various
protocols including decode-and-forward (DF), and amgdihd-forward (AF) have been proposed
in the literature for two-way relay networks [4], [5]. Coaty to the DF case, the AF relaying
does not perform any signal decoding at the relay, and hengg/sa lower hardware and
software complexity, as well as smaller transmission ddfagrestingly, such simple processing
of AF relying is key to large-scale multiple-input multipteitput (MIMO) systems. In practice,
relays can be equipped with multiple antennas for perfoomamprovement which leads to a
MIMO relaying scheme.

Fig. 1 illustrates a schematic of MIMO multi-operator twayvrelay networks (with a large
number of antennas for the relay). User pairs from differgmérators employ the AF relay
(with a large number of antennas) to achieve a better quafitgommunication. Note that
the mathematical formulation of the illustrated scenasidhie same as multi-pair two-way AF
relaying. Multi-pair two-way relaying is a generalizatiaf two-way relaying in which more
than one pair of nodes exchange information within the nekwby employing the shared
relay. Since these pairs work in the same time slots and émxyubands, multi-pair two-way
relaying improves the spectral efficiency, but it requiredier processing to cancel inter-pair
interference. Note that these systems have several patgméctical applications, e.g. when
multiple communication partners (belonging to differeperators) use one relay (possibly owned
by a third party/virtual operator) and in the same time/gpec (see also [6] and references
therein for more details/examples).

The sum-rate of a MIMO AF relay system depends on the amgiicamatrix, i.e. the
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Fig. 1. A schematic of MIMO multi-operator two-way relay netrks. User pairs from different operators employ the relay

(with a large number of antennas) to achieve a better qualigtommunication.

beamformerof the relay. Therefore, the aim of several works is to designrelay amplification
matrix to maximize the sum-rate of the network. The sum-ratximization problem for the
above mentioned networks is a non-convex optimizationlprol{and belong to a class of NP-
hard problems [1]) and several algorithms have been prabiosthe literature to deal with the
aforementioned problem. In [7], a branch-and-bound methasl employed to tackle this design
problem in the single-operator case resulting in an ovelwing' computational burden. A
related method, i.e., the polyblock approximation aldomt9], was applied in a similar scenario
considering monotonic optimization that can only be used denchmark for small/medium
MIMO relay networks due to a prohibitive computational cdexity in case of a large number of
antennas (see also [10]). The authors of [1] developed anpotjal-time iterative method based
on a semidefinite relaxation (referred to as POFDIO tackle the problem. POTDC guarantees a
rank-one solution only for the special case of single operahd hence, its solution is generally
associated with a synthesis loss. Furthermore, eachiterat POTDC consists of solving a

convex determinat maximization (MAXDET) optimization theas a large computational burden.

The branch-and-bound algorithm generally has an expaiergimputational cost [8].

2pOlynomial-Time algorithm forDifference ofConvex programming.
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On the other hand, POTDC results outperform those obtaiyeithdo approximate (projection-
based) algorithm suggested in [6]. The references [1] atflificlude two heuristic algorithms
based on one and two dimensional searches for the specealbtaingle operator. Suboptimal
methods based on zero-forcing (ZF) and maximume-ratio combi(MRC) have been presented
in [12] for the case of one operator. This work also includestarative algorithm solving a
semidefinite program at each iteration. The interestedereeah refer to [9], [13], [14], [15] and
[16] for other approximate or heuristic approaches devisetdckle the sum-rate maximization
problem.

In the case of arbitrary number of operators, there is noiefficnethod that can lead to
(some type of) optimality of the obtained solution. The lstic methods are mainly based
on observations for special cases and structured charffgithermore, most of the proposed
methods in the literature are merely suitable for smallespabblems (see e.qg. [1], [13]).

The large-scale MIMO concept addresses employing a largebau of antennas for trans-
mit/receive leading to superior performance improveméntshe systems when compared to
ordinary MIMO systems [17]-[19]. In particular, for sumt@gamaximization, it has been shown
that the ZF and MRC are nearly optimal for very large-scake ,(massive) MIMO systems; viz.,
when the number of antennas diverges to infinity under eedanditions (see e.g., [2], [20],
[22]). However, there exist systems with moderate or evéatively large number of antennas
for which the asymptotic results do not hold; indeed, howdathe number of antennas should
be depends on the scenario. Note that conditions for neanalgty of ZF/MRC are not satisfied
in medium-scale (i.e., lower-regime massive) MIMO scemamenerally. Therefore, for these
MIMO systems beamformer design for sum-rate maximizatidhb& required to improve quality
of service.

In light of the above, the main contributions of this work dasm summarized as follows:

« The problem is considered in a rather general form enablsguser to freely choose

the number of operators and the structure of the associatgdces (i.e., the channel

parameters).

3For example, in [2] it has been shown that the rﬂ%’:jl’;e;’fo‘fmi::ﬁ“‘“ should diverge to infinity for the asymptotic results

to hold. Furthermore, an analysis of the behavior of the sat®-for the systems with respect to the number of antennde at

relay and the number of users has been considered in [20(sed21] for a related problem).
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« We devise an iterative method based on the minorizationsmiaation technique to tackle
the design problem. Applying the proposed method incre#ilsesvalue of the objective
function (i.e., the sum-rate) at each iteration. Therefdrean be shown that the obtained
solution is a stationary point of the problem (under somednsibnditions, see [23] and
references therein) satisfying the first-order optimabtiterion for arbitrary number of
operators. It is worth mentioning that the general case watiitrary number of operators
leads to a more difficult optimization problem—particwathe current methods based on
semidefinite relaxation can be applied only in the case @jisiaperator (see the discussion
before Lemma 1).

« The proposed method is computationally efficient and herecebe applied to medium-
scale (or lower-regime massive) MIMO systems as well. Idgdeach iteration of the devised
method consists of solving a convex unconstrained quadseatgramme (QP); which can be
efficiently done for instance with af(n?3) complexity (wheren is the problem dimension
given by square of the number of antennas) [24]. As a residtytethod can handle problems
with n ~ 103 variables (or equivalently/ ~ 70) on an ordinary personal computer (PC)
within a few minutes.

The rest of this paper is organized as follows. In Sectiorwk, present the system model
and problem formulation. We propose an algorithm for desigrthe beamformer matrix in
Section Ill, followed by several observations in Section $éction V includes several numerical
examples. Through an efficiency investigation, we showtth@proposed method can be applied
to relays with large MIMO arrays. Finally, conclusions arawin in Section VI.

Notation: We use bold lowercase letters for vectors/sequences andulpplercase letters for

matrices. See Table | for other notations used throughasitpédper.

[I. PROBLEM FORMULATION

We consider a MIMO AF two-way relay network consisting fy antennas/ (communi-
cation) operators and pairs of user terminals belongingfterdnt operators (see the discussion
of Fig. 1 in Section | and [6] along with references therein details/practical applications of
such systems). We assume single-antenna user terminal8aariading channels between the

k™ user of thel®" operator and the relay, which are denoted{lby,} [1]. The received signal
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TABLE |

NOTATIONS

z(k):

1|

R(x):
Vi(x):
V2 f(x):

f(n) = O(n*):

E{z}:

x ~CN(0,X%):

the k" entry of the vectox
the I,,-norm of the vector, defined as(}", |=(k)[")

3=

the transpose conjugate of a mat¥

the transpose of a matriX

the trace of a matrixX

the maximum eigenvalue of the hermitian matkx

the n'”" eigenvalue of the matriX

the Frobenius norm of a matriX

X —Y is positive semidefinite

the Kronecker product

the vector obtained by column-wise stackingXf

the identity matrix ofC™*"

the I*" standard basis vector iR"

the set of real numbers

the set of complex numbers

the real part ofr

the gradient of the differentiable functiof{x)

the Hessian of the two-times differentiable functiffx)
f(n) is upper bounded byn® for some0 < ¢ < co
the expected value of the random variable

the zero-mean random vecteris distributed according
to the circularly symmetric complex Gaussian distribution

with covarianceX.

at the relay can be expressed as [1], [6],

L 2
r= Z hy 2z, +npg (1)

=1 k=1

wherezy,; is the transmitted symbol by the”" user of thel™ operator with powep;; (given

by E{|zx,|*}), andng denotes the circularly symmetric white Gaussian noise wityariance

matrix %1 at the relay. By employing the AF protocol, the transmit sigof the relay is given

by
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with G € CM»*Mr peing the relay amplification matrix, which is to be designé& assume
reciprocal channels between the relay and users [6]; coesgly, the received signal, ; of the

kt" user at thd* operator becomes
Yy = i T+ nyy (3

whereny,; is the associated (white) noise component (with variaaﬁ;le. The sum-rate of the

system can be formulated as [6]
L

2
1
Rsum = 5 Z Z 10g2(1 + 77]671). (4)

=1 k=1
Hereinn,,, denotes the signal-to-interference-plus-noise ratibNESIfor the k™ user of thel™
operator and it has the following expression (see AppendirrAhe detailed derivation of this

expression)

e = g'®; g 5)
Cgh (T + Ar)g + oy
whereg = ved G) and the matrice®,;, Y ;, Ay, are defined as
H
P = Pr (hglk,l ® hz,z) (hglk,l ® hg,l) (6)
H
Y = Z Zp;;j (h£l~® hgl) (h£l~® h£l>
k1l

Ak,l e 0'12% (IMR ® (hk7lth71)T) .

Note that in the definition of the SINR in (5) and (6), the effetthe “self-interference” has been
ignored—due to the assumption that terms correspondinglfargerference can be canceled
using the channel knowledtésee e.g., [28] and [6] for details). The devised method ia th
paper, however, can also be applied to the sum-rate maxionzaroblem without making such

an assumption.

4The channel state information (CSI) of all links is requidhe relay which can be estimated if each user sends arigaini
block of lengthN; > 2L to the relay [26]. Furthermore, the considered time-dorisiluplex (TDD) relaying leads to reciprocal
channels between the users and the relay [27]. Consequ#hrglylownlink channel matrix can be obtained by transpottieg

uplink one and taking calibration into account. At the usside, thek'!” user ofI*"

operator should only know two scalar
parametershy ,Ghy; and h{ylth,k,l for self-interference cancellation as well as data detactrespectively (that may be

estimated by forwarding the training signal received by rislay).
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The sum-rate maximization is constrained via the totallalsée powerPy at the relay, viz.

E{IF2} = tr{E{Grr"G"}} (7)
L 2
= > > vl Ghyls + oR[IGIF < Pr

=1 k=1
which can be expressed with respect to (w.gtasg”Cg < Pr where

L 2
C=orlyz + Y Y pra((hihil) " @ L), (8)
=1 k=1
The aim is to design the AF amplification mati@ in order to maximize the sum-raig,,,,.

Therefore, the design problem (i.e., sum-rate maximipatio MIMO AF relay networks with
L operators can be cast as the foIIowing problem:

max Z Z log, | 1 + g Puig
g (Y, + Ari)g + 0f,

I=1 k=1
s.t. gfCg < Pp. 9)

Note that the inequality constraint in the above problentiva (i.e. satisfied with equality) at the

optimal point. More precisely, assume tlgais an optimal solution to (9) witg’Cg = P, < Pkx.

Then a scaled version @f which satisfies the constraint with equality, igg.= /Pr/Fy g, will

lead to a larger objective value. This contradicts the oglity) assumption ofg. Considering

this observation, the optimization in (9) can be equivdjergcast as the following problém
Akl

S. t. gHCg = Py

where we have used the following definitions:

B., = Tkl—l-AkH-ﬂC (11)
Pr

Ay, = B+ Py
The objective function of the problem (10) consists of thedurct of several fractional quadratic

functions. This problem is non-convex and belongs to a abig§P-hard problems in general

[1].

The derivations of (7) and (8) are similar to those develoipedppendix A.

®In (10) we letk run from1 to 2 as in (9); however, from a mathematical point of view, thegasied approach can handle

an arbitrary interval foik.
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[1l. SUM-RATE MAXIMIZATION
A. The Proposed Algorithm
Note that the objective function in (10) is invariant withspect to scaling; therefore, we
can deal with the unconstrained problem and then scale fbé®og such that it satisfies the
constraintg? Cg = Px. In this paper, we use the minorization-maximization (ofjoriaation-
minimization) technique to tackle the non-convex desigibfem in (10). Minorization-maximization

(MaMi)” is an iterative technique that can be used for obtaining atisol to the general

maximization problem [23] [29]:

max f(z) (12)
S. t. c(z) <0.

Each iteration (say the'" iteration) of MaMi consists of two steps (see Fig. 2):

. Minorization Step: Findingy*)(z) such that its maximization is simpler than that fif)

andp™*)(z) minorizesf(z), i.e.,
() < flz), Vz (13)
P (2 D) = F(ztD)

with z(*~1 being the value of at the(x — 1)™ iteration.

« Maximization Step: Solving the optimization problem,
max  p"(z) (14)
s. t. c(z) <0

to obtainz®).

Now, consider the following equivalent form of the problem(iLO):

L 2
max YY" [log (87 Avg) — log (8" Buig) | (15)
=1 k=1
Note that the following inequality holds due to the concawf log(z) for all =, z, € R™:
1
log(z) < log(zo) + x_(ff — o). (16)
0

"This technique is also known as the MM algorithm in the litera [29].
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10

Fig. 2. An illustration of the MaMi technique.

Therefore, the term-log(gB,,;g) can be minorized using the above inequality at any given
go. More precisely, setting,, = gi’B;.,g0 andz = g B, ;g leads to the following minorizer
for —log(g"By,g):

—log(g"By.g) > (17)
1

g{' B0

Additionally, substituting the term-1log(g”By,g) in (15) with the above minorizer (and ne-

—log(gt'Brugo) — (g"By,g — gt Bgo)-

glecting the constants) leads to the following maximizatwoblem at thex + 1) iteration:
1

L 2
log(g A — ip . 18
max lzz{og«g 8) ~ gy g ® B (18)

=1 k=1

Inspired by the rich literature on semidefinite relaxative, note that by consideriny. = gg’

as the optimization variable in (18) and dropping the rangehstraint, a convex alternative
of (18) can be obtained at each iteration (see e.g., [30]keCm solutionX is obtained, the
optimized vectorg should be then synthesized froX. However, there is no guarantee for
a rank-1 solutioh X, and hence, this approach is associated with a synthesis[3d3. In
addition, applying the relaxation leads to iterativelyveéoy a MAXDET problem possessing
a high computational burden (a similar algorithm has beeaggessted in [1]). Instead, in the
sequel, we devise a computationally efficient method thate@ses the objective value at each

iteration and guarantees the first-order optimality caadifor the solutiong (under some mild

8Note that by employing the aforementioned semidefinitexeglan, a rank-1 solutiorX can be obtained just for the single

operator case witlh = 1 (see [1] for details).
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11

conditions, see [23], [30] for details). To this end, we @med by finding a minorizer for the

term log(tr{A;,X}) as a function ofg using the following Lemma.

Lemma 1. Let s(x) = — log(xTx) andx”Cx = P for any positive-definite matriceE, C in

CV*N as well asP € R*. Then, the following inequality holds x, x,:

s(x) < s(xq) + R (b (x — x0)) + (x — x0) " U(x — %) (19)
where
—2
b — (ngTxo) Tx, (20)

4P
U = I
(Wffcwl i 6)

and wherew is the principal eigenvector df' and ¢ > 0 is arbitrary.

Proof: See Appendix B [ |

Assume thaig’Cg = Py at each iteration (see the Remark 1 below). Now observe that
using the above lemma, the following minorizer is obtainedthe termlog(g” A, ,g) at any

given gg:
log(g" Arig) > log(gll Arigo) — R ((br)” (g — &)
—(g8 — 20)"Uru(g — 80) (21)

whereb;; and Uy, ; are related toA;; and can be calculated by employing (20) in the Lemma
(see (23) below). Based on (18) and (21), we consider thenmEation of the following criterion

w.r.t. g at the(x + 1)™ iteration of the proposed method:

L B
H k,l

’ U 22

zzlg <(g(ﬂ)>Hngm+ )g 2

2
=1 k=1

+R ((bk;,l — QUk,lg(ﬁ))Hg>}

with

—2
by = Apig™, (23)
o ((g(”))H Ak,zg(”)> H
4Pg
U = ——= +t¢€ I,
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12

and wy,; denoting the principal eigenvector &, ;. The above optimization problem can be

recast as the following unconstrained QP:

: K K H
min g’QWg + R ((q( ) g) (24)
where
L 2 B
Q" = w + Uy, (25)
22 @ B
L 2
q = Z (b — 2Uj,g"] . (26)

Note thatB;; >~ 0, and alsoU;; > 0 because it is a scaled version of identity malfriwith a
positive scalar. Therefore, the matG¥* is positive-definite at each iteration. Consequently, the
problem in (24) is strictly convex w.r.ig. The unique solution to this optimization is obtained
by solving the system of linear equatio?Q g + q*) = 0, viz.

1

g:—§

(Q(n-l-l))_l q(ﬁ). (27)
It is worth noting that the solutiog to the above system of linear equations can also be obtained
via directly solving the linear system using more efficieethniques, and thus avoiding the
inverse (see e.g., [32], [33], and the references therein).

Remark 1:Note that the above solutign does not necessarily satisfy the constrgifitCg =
Pg of the original problem (10) at each iteration. As mentiobetbre, we can scale the obtained
solution at the convergence to deal with this issue as thectig function in (10) is scale
invariant. However, the derivation of the matiX,; in Lemma 1 requires the satisfaction of
the constraint at each iteration; see Appendix B for detdilseerefore, we need to scale the
obtainedg at each iteration such that?Cg = Pg. Note also that the scaling does not affect
the convergence of the sequence of the objective functituresaassociated with the problem

(10). n

Table Il summarizes the steps of the proposed method foy amformer design to max-
imize the communication sum-rate. The suggested methodowrap the value of the objective
function at each iteration (see Section IV-B). Note that toenputational complexity of the
method is linear with the number of iteratioNé Furthermore, each iteration of the algorithm

consists of solving a strictly convex problem (24) usingheitthe closed-form solution in
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TABLE I

THE PROPOSED METHOD FOR SUMRATE MAXIMIZATION VIA RELAY BEAMFORMER DESIGN

Step 0: Initialize g with a random vector irCM% (and scale it
such thatg” Cg = Pg); setk = 0.

Step 1: ComputeQ™) andq*) using (25).

Step 2: Solve the convex problem in (24) using either the closed-
from expression (27) or direct methods (for solving the eisged
system of linear equations) to obtagi* .

Step 3: Scale the obtained solutiaggt**") such that
(gt N A gt = pp; setk < k + 1.

Step 5: Repeat steps 1-3 until a pre-defined stop criterion is
satisfied, e.g|f“tY — f(®)| < ¢ (wheref denotes the objective

function of the problem (10)) for somg> 0.

(27) or direct/iterative methods for solving systems ofeén equations [32], [33]. The steps
for computing the solution can be implemented e.g. via tlgorghms in [24] (for matrix
multiplications) withO(n*3) complexity wheren = M3 is the problem dimension. The devised
method can handle problems of dimension on the ordet0éfvariables on an ordinary PC
within a few minutes. The computational efficiency of thisthoel makes it potentially useful in
medium-scale MIMO systems (see [34] for descriptions ofcamdly developed prototype of such
a system). We herein also remark on the fact that the MaMirdlgos were originally developed
to achieve a very low computational burden by avoiding cacapéd matrix inversions that are
an indispensable part of off-the-shelf optimization pags see, e.g. [35]. Also, comparisons
with various methods show that MaMi algorithms are usuallifotilt to beat in terms of stability

and computational simplicity [29].

B. Weighted Sum-Rate Maximization

In practice, the users of specific operators may have a higterity compared to others. In
such cases, a maximization of the weighted sum-rate becohmeterest. The weighted sum-rate
is given by

L2
D) wialogy (1 + k) (28)

=1 k=1

DO | —
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with wy; being the (non-negative) weights associated withifhaiser of thd'™ operator. Similar
to the sum-rate maximization case, the corresponding a@giron problem can be cast as
gl Ay, lg) o
max (29)
g H]I[l ( HBMg
s.t. glCg= Py

The above problem can be dealt with via the proposed methalisnpaper after some minor

modifications. To see this, consider the following equimal®rm for the problem in (29):
L

2
max Z Z W 1 [log (gHAk,zg) — log (gHBng) ]

g
=1 k=1
and note that solutions to the above problem, which is a neatiifersion of (15), can be obtained

via the algorithm in Table II, using

L 2
By,
Q(H) = W g : + U] (30)
; ; (g™)" By,g®
L 2

q® = Z Zwk,l [br, — zUng(”)} , D)

=1 k=1
in lieu of (25)-(26).

IV. SUM-RATE UPPER BOUND AND SOME

COMPUTATIONAL ASPECTS
A. Sum-Rate Upper Bound

In the following, we derive an upper bound on the objectivection of (10), and the associated
sum-rate metric. Note that the boundedness of (10) is a kelyféam the convergence of the
proposed method—see Section IV-B below for details. We estnat each term of the product
on the right-hand side of

HAL g
221““ﬂsm:||||g L 32
1=1 k=1 8" Br.ig o2
can be bounded from above by considering the related gerestadigenvalue problem, viz.
H

g A8 -1
252 <)\ B, A} 33
g"Big oz {Bii A} (33)

Moreover, as the sum-rate is invariant with respect to péations of the matriced Ay}

and {B,;} within the products, the upper bound may be strengthenedobgidering such
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permutations. More precisely, let(k,[) : {1,2} x {1,---,L} — {1,2} x {1,---, L} denote
a generic permutation function over all possiljle [). Then, according to the generalized
eigenvalue upper bound,

g7 A kg

< Amaz A B AL 34
glB,g { kil (kﬁl)} (34)

which implies

1 L 2
Rsum = logQ (mknél) {H H )\max {Bk llAﬂ(kl }}) . (35)
k=1

=1
Next note that the equality in (34) is attained wherns a principal eigenvector of the matrix

B,;}A,T(M). As a consequence, the upper bound in (35) is attained whéerncesA, B, and
{Uk,} (with B, and{U,,} being invertible) exist such thak . ; = AU, andB;; = BUy,,
for all (k,1) € {1,2} x {1,---, L}. This shows that the bound in (35) is tight and it can not be

improved upon unless the class of matriges, ;, B} is restrained.

B. Convergence

In order to study the convergence of the devised approadered that

f(g(n—l)) — p(fﬂ) (g(f@—l)) (36)
< p¥ (") < f(g")

wherep™®)(.) is the minorizer associated with the objectifg¢) at the x*" iteration. The first
inequality in (36) holds due to the maximization step at e iteration, whereas the second
inequality comes from the definition of the minorizer (se8)f1This monotonically increasing
property together with the derived upper bound in (35) gutes the convergence of the
sequence of the objective valué¢g (g(“))}, and hence of the sum-rate metric. Note that the
obtained solutions via the proposed method are stationaintof the problem (under some
mild conditions [23]) satisfying the first-order optimalicriterion for the non-convex problem
(20).

C. Practical Real-Time Applications

The communication channe{$y,,;} are subject to change with time in real-world applications

in particular due to the relative motions of users/relagitgzers. The time intervals for which
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the channels can be assumed to be invariant depend on thdeDgppeads of the channels
(see e.g., [36], [37] for details). Note that for any new sktcbannel parametergh,;}, a
new beamforming matri%x is to be designed. Therefore, the convergence speed (catigmnatl
complexity) associated with the design method plays an rtaporole in the applicability of the
method. In addition to general results on the computatieffadiency of the proposed method,
an interesting aspect of the proposed method is that thetyjoélthe obtained solution and the
convergence speed depend on the employed starting posSgsetion V and [23] for details).
Therefore, in real-time applications where the commurocathannelgh,;} change with time,
the proposed method can quickly converge if initializedwtite preceding solutiog. Note also
that in practical real-time applications, the method canrbplemented more efficiently (e.g.,
via implementation in C language, parallelization, and 8 @and be run on powerful digital
signal processors (DSP/FPGA) to speed up the convergegiedicntly (see the discussion of
Table 1l as well).

V. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, the performance of the proposed methodakiated via Monte-Carlo simula-
tions. An AF based bidirectional MIMO relay network withoperators and/r antennas at the
relay is considered. The variances of the Gaussian nois¢bdaelay and users are assumed to
be equal, i.e.o% = o}, = o.. For the sake of comparison, we use the same power allocation
as considered in other related works (see e.g., [1], [6] &edréferences therein); namely, we
assume that the transmit powers of the relay and users anécale i.e., P = px; = p. The
signal-to-noise ratio (SNR) is defined ags2. Moreover, the normalized distance betwedéh
user of thel’* operator and the relay is representeddyy. For simplicity and without loss of
generality, we assume thdt; = d, andd,; = d, (with d; 4+ d; = 1). Therefore, the near-far
(N/F) ratio is defined ag,/d,. The Rayleigh flat fading channel vectofh, ;} are reciprocal
and spatially uncorrelated. The path loss exponent is asgumbe3 in all simulations, thus
the fading variances are proportional I¢d27l [36], [37]. As a result,{h;;} are modeled as
independent Gaussian random vectors With ~ CA (0, (do/dk71)3 I) whered, = 0.1 is the
considered reference point. All the results are presentetsidering100 realizations of the
associated fading channels. As to the convergence of tipmped method, we considge= 1073

in Table Il. The QP of the step 1 of the proposed method (seéeT&bis solved using the
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embedded MATLAB function for directly solving systems afidiar equatioris

We begin by investigating the effect of the SNR on the sura-iata symmetric scenario (i.e.,
d; = d,). The sum-rate values associated with the proposed methadeh as the POTDE
method of [1] versus SNR are shown in Fig. 3 fair, = 4 and Mg = 8 with L = 2. As expected,
the sum-rate is increasing with respect to SNR. Furtherntbeeresults of the proposed method
are slightly better than those of the method in [1] becauseptbposed method circumvents the
synthesis loss associated with POTDC. This figure also deduhe results for ZF and MRC
methods withAMy € {4,8} and My = 20 (that can be considered as a medium-scale MIMO
scenario). It can be observed that the proposed methodréwtps well ZF and MRC methods.
This observation is compatible with the fact that ZF and MRE merely nearly optimal when
the number of antennas diverges to infinity. Next, we studydfiect of the N/F ratio. Fig. 4
plots the sum-rate values versus different N/F ratios=(2, SNR=20dB). The proposed method
achieves better results in the whole interval of the N/Forathen compared to other methods.
Note that the N/F ratio is defined ds/d, and the maximum rate is achieved in the symmetric
scenario where the relay is in the middle of users (see [4infore details and [1], [6] for similar
behaviors). Note that in the above figures, we do not inclhéerésults of POTDC method for
Mg = 20 due to prohibitive computational burden.

It can be observed from Fig. 3 and Fig. 4 that the larger thebaunof antennas\/y, the
larger the sum-rate. This aspect is further explored in biga) and (b) where the values of
sum-rate are plotted versugy; for L = 1 and L = 2, respectively. Fig. 5 (a) also includes two
ad-hoc algorithms, namely 1-D RAGES and 2-D RAGES [1] alontip whe upper bound [16]
on the sum-rate values fdr = 1. The monotonically increasing behavior of the sum-ratéwit
respect toMy is evident from these figures. This behavior can be justifigadtdnsidering the
fact that larger values af/y (i.e., more antennas at the relay) provide more degreeseflém
for the design problem. For the case lof= 1, the differences between the sum-rate values of
various methods are minor. Note that the curves associatadP@TDC, 1-D RAGES, and 2-D

RAGES are truncated for larger values &f; due to the prohibitive computational burden of

The reader may refer to the MATLAB commaneé\{b” for obtaining the solution to the linear systefx = b.

101t has been shown that POTDC outperforms several existirthads for sum-rate maximization in the conventional MIMO

scenarios (see e.g., [1], [11], [28]).
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Fig. 3. The values of sum-rate associated with the propossttiod and the method of [1] (i.e., POTDC), ZF, as well as MRC
versus SNR forL = 2.
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Fig. 4. The sum-rate values for various methods versus Ni& far L = 2 and SNR=20dB.

these methods. We further note that the proposed methokistthe upper bound for various
Mp well.
Fig. 5 (a) and (b) plot the sum-rate values for the ZF as*wdl can be observed from Fig.

5(b) that for a wide range of the consider&t};, the proposed method outperforms well the ZF,

\We do not include the results of MRC because for= 1 is very similar to ZF and fo. = 2 is not competitive.
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Fig. 5. The sum-rate values for various methods versus thaauo of antennad/r: (a) the case of. = 1, (b) the case of
L =2. The SNR is set t@0dB.

as expected (see the explanations related to lower-regiassive in Section I). Then, by further
increasing the number of antennas, ZF tends to the obtaiakeks/ by the proposed method
(massive regime). Note that the borderline between therlogggme massive and massive is not
sharp and also depends on other parameters like the numlogreddtorsL; e.g., in Fig. 5(a),
at smaller values ol we have similar sum-rate values for the proposed method &nh(this
point will be analyzed shortly—see Fig. 6 below).

It can also be observed from Fig. 5 (a) and (b) that the sumfmatL = 1, My = 2 is larger
than that of the case with = 2, M = 2. This can be explained considering the fact that in the
case ofL = 2, the interference power for the users of the first (secon@yaipr grows due to
the existence of the interferences corresponding to ugdieecond (first) operator; whereas,
when the system has one operator, the interference powgrcontes from the relay/receivers’
noise. This leads to a lower sum-rate value for the systerh b operators (and/p = 2).
Note that by increasing the number of antenfigg, a judicious design of the relay beamformer
matrix G decreases the interference power and as a result, largerasamalues will be obtained
(see Fig. 5 (a) and (b)). However, for smaflz, there are not sufficient degrees of freedom (in
the design problem) to circumvent the interference powso@ated with the second operator.

Therefore, one can conclude that a large number of anteondkd relay becomes quite useful
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case ofL = 1, and (b) the case af = 2. Note that the problem dimension is given hy= M2.

when several operators are supposed to work simultaneously

The effect of the number of operataksis considered in Fig. 6. The figure shows the sum-rate

values versud, for My = 20 and SNR=20dB. The figure includes the results of the proposed

method and ZF (we do not include MRC herein as it is not cortipe}i Also, the POTDC has
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prohibitive computational time fof. > 2 and RAGES methods can not be applied for- 1.

It is observed that largek leads to more significant gap between the proposed method’&and
This behavior can be explained considering the fact thaaflyenptotical near optimality of ZF
depends on the number of operatd@rsn addition to the number of antennas; (see Section

| and [2]).

The computational times of the various methods for tackiigsum-rate optimization problem
(10) are analyzed in Fig. 7 (a) and (b), respectively. Ther&gullustrate the average compu-
tational time considering0 runs of the methods with random initializations on an ordma
PC (with 8GB RAM and CPU CoRe i5). It can be seen that the POTD&had has the
highest computational burden as compared to the other mie{imote that the values for POTDC
correspond tol0 iterations). The 1-D RAGES and 2-D RAGES algorithms can beleyed
for up to Mz = 40 [1]. It is observed that the proposed method has much lowerpatational
cost when compared to the existing methods. To be more pteitie computational time of
our method is on the order of (at most) a few second3d/at ~ 40,50. We remark on the
fact that the ZF and MRC methods have lower computationadldrurwhen compared to the
proposed method; however, the resulting sum-rate valugesmaonding to these methods are
considerably lower than that of the proposed method in autnweal and medium-scale (lower-
regime massive) MIMO systems (see e.g., Figs. 3, 4, 5, andd@rendiscussion in Section 1).
Therefore, meaningful improvements in the sum-rate vafues locally optimal values) can be
achieved by the proposed method in such systems at the cashigher computational burden
as compared to the ZF/MRC (see Section IV-C for a discussidheocomputational time and
practical applications).

We next investigate the initialization and convergenceedfiane of the proposed method. To
analyze the random initialization, we report the histogdrthe convergence times on a standard
PC (see above) for various random initiations. We considérindependent random Gaussian
vectors inCMz with i.i.d. elements. Fig. 8 (a) and (b) plot the aforememtio histograms for
the case of. = 1 as well asL = 2, respectively (assumind/r = 20 and SNR=20dB). It can be
observed that the histograms are concentrated well ardwenddrresponding averaged values in
Fig. 7. The convergence time of the proposed method wheniritialized by the sub-optimal
solutions is shown in Fig. 9 versugy. In this figure, the ZF and MRC are employed to initialize

the proposed method for SNRGAB. As expected, such starting points speed up the conveggen
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Fig. 8. The histograms of the computational time (sec.) ffier proposed method on a standard PC emplogid@ random
Gaussian starting points, &)= 1, b) L = 2. The values ofMr and SNR are set t80 and 20dB, respectively.

of the algorithm as compared to the random initialization.

VI. CONCLUSION

The problem of sum-rate maximization in MIMO AF relay netk®with multi-operator was
considered. The aim was to optimally design the relay beamif matrix in order to maximize
the communication sum-rate. The design problem was casteasiaximization of a product of
many fractional QPs subject to the relay power constraihickvbelongs to a class of NP-hard
problems in general. We devised an iterative method basettheminorization-maximization
(MaMi) technique to deal with the problem. The minorizers fbe objective function terms
were derived by using linear and quadratic minorizers fotrixi@ector functions. The proposed
method provides quality solutions to the design problem,(stationary points of the problem,
under some mild conditions) for an arbitrary number of ofmsal. Each iteration of the
proposed method was dealt with via solving an unconstraisieittly) convex QP either using a
closed-form solution or by solving a system of linear equai Numerical examples confirmed
the effectiveness of the proposed method when comparedher otethods in terms of the
solution quality and the computational efficiency. In partar, the method could handle design

problems of dimensions of up to several thousands varigbtpsvalently, a number of antennas
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of up to My ~ 70) on an ordinary PC within a few minutes, which makes it pasiyt useful

in medium-scale (or lower-regime massive) MIMO scenarios.
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Fig. 9. The comparison of the computational times of the psed method when initialized by suboptimal solutions and

random starting point. Herein, we set SNRdB.

APPENDIX A

THE DERIVATION OF THE SINR EXPRESSION IN(5)

Note that the SINRy,; for the k' user of thel®" operator can be computed via the following

expression:
E{ \ h;;F,ZGhafk,ﬂC?.fk,z |2}

Nki =
B{| 22500 05 Ghy oy i? ) + BE{[hi Gng[*} + of
in which the numerator can be expanded as

(37)

E{|h£lGh3fk,lx37k,l|2}

= E{|wz—a[*} (hi;Ghs_py) (hy Ghy )"

= Pk,ztr{(h;ép,th:s—k,z)H}tr{hZ,lGh3—k,z}

= praved G)" ((hglk,l ® hf,z)H(hik,z ® hg,z)) veq ()

In the above we have used the fact that the schquhg_kJ can be alternatively written as
(hi_,,®h{,)vedG) considering the Kronecker product property ABC} = (C" ® A)veqB)
[38]. Now by definingg = ved G) and

D), = pk,l(hgfk,l ® hf,z)H(hik,z ® hz,z)
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the numerator ofy,.; in (37) can be rewritten ag” ®; ;g. Using similar calculations, the terms
in the denominator of the SINR; ; in (37) can be straightforwardly expressed as they aredstate
in (5) and (6). Note that (7) and (8) can also be verified viailaintechniques.

APPENDIX B

PROOF OFLEMMA 1

We begin the proof by separating the real and imaginary pErthe variablex € CV as
2" y"]" € R*". Next, we consider the Taylor expansion of the functiofiz” y”]”) which
leads to a standard quadratic majorizer [29]. It can be eerifnat by employing straightforward

techniques, the aforementioned majorizer can be expregsédx as
s(x) < s(x0) + R (Vs(x) " xmxo (X — X0)) (38)
+(x — x0)"U(x — x0)

for all x,x,. Note that the existence df = 0 such thatV?s(x) =< U for all x guarantees
holding of the above inequality [29]. In the sequel, we deiilie matrix boundJ on V2s(x).
Let h(x) = x'Tx andx = [z yT]T; using the results of [38], [39] it is verified that

—1 —2Tx
Vst = gV = S (39)
Vis(x) = %V%(XHV}L@Z&()X)

—2T  ATxxHT

XATx (xHTx)?
Note thatT = 0, and therefore, the first term in the expressiorV3f(x) is negative-definite.

As a result, it suffices to obtaip > 0 such that
oy S L (40)

Herein, we remark on the fact that several algebraic bouadsbe obtained satisfying (40);
however, the tightness of the bound affects the convergepeed and quality of the solution.
Therefore, in what follows, we derive the bound considemmgoptimization problem. Indeed,
as the matrixfxx’ T is rank-one, we can selegtas~y > 4¢ with

x"T?x

(= max ATy

(41)
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The positive definiteness of the matfix ensures existence of the full-rank (square) mawix

such thatT = VV#, Let a = Vx and consider the following equivalent expression for the
above objective function w.r.k:

() ()

The latter change of variables leads to the following optation problent:

i (aH(\;Hv)a> < ; ) 42)
a a’‘a a’‘a

Now, we proceed by solving the above optimization problenoiider to obtain{. Observe

that the first factor in the objective of the problem in (42)risependent of|al|,. Indeed, by
noting that the expressioﬁw is a Rayleigh quotient [38], one can immediately obtain
its maximum value given by,,...(VZV). This value is achievable by choosiagto have the
samedirection (i.e. a/||al|;) as the principal eigenvector of the matix”V, denoted byv;.
Once the direction of the optimal (i.e. a/||al]|s = v;) is obtained, the value ofal|; can be

calculated by considering the constraift Cx = P. More concretely, we have

(VHa)'c(va)="r

which yields
P
= . 4

HaH2 \/V{{V_lcv_HV1 ( 3)

The maximum value of the objective function in (42) is thugegi by

P

= Amaz(VIV 44
¢ (V{{V—1CV—HV1) ( ) (44)

P
= Amaz(T).
(V{{V—1CV—HV1) (T)

Consequently, we can selegt= 4¢ + ¢ for somee > 0 to boundV?s(x). Note that asT >~ 0,
the matrixV is invertible. Finally, using (38), (39), (44), and the dissions above we obtain

—2TXO
x5 Tx

4P
U 2 (——~— I
(WlHCW1+€)

wherew; is the principal eigenvector of the matrik; and hence the proof is complete.

b £ Vs()|xex, = (45)

2Dye to the fact thafl' = 0, the optimalx can be uniquely determined via the optinaal
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